scholarly journals Study of Damage Evolution in High Strength Al Alloy using X-Ray Tomography

Author(s):  
Helena Jin ◽  
Wei-Yang Lu ◽  
Alejandro Mota ◽  
James W Foulk ◽  
George Johnson ◽  
...  
2011 ◽  
Vol 683 ◽  
pp. 95-102 ◽  
Author(s):  
Hao Yang ◽  
Peng Yang ◽  
Jing Mei Tao ◽  
Cai Ju Li ◽  
Xin Kun Zhu

Sacking fault energy (SFE) is the key role in solving this problem of getting high strength and expected ductility simultaneously. This work adds Al as the procedure of decreasing SFE in Cu face-centered cubic. It is an economic and effective method to counterpart Cold-rolling at liquid nitrogen temperature to get high density deformation twin and ultrafine-grains size. After undergoing tensile and X-ray diffraction tests, Cu-4.5 wt.% Al plays the best performance on both strength and ductility. Thus there exist the optimal SFE of Cu-Al alloys which get both high strength and expected ductility simultaneously.


2010 ◽  
Vol 58 (18) ◽  
pp. 6194-6205 ◽  
Author(s):  
J.J. Williams ◽  
Z. Flom ◽  
A.A. Amell ◽  
N. Chawla ◽  
X. Xiao ◽  
...  

2011 ◽  
Vol 42 (10) ◽  
pp. 2999-3005 ◽  
Author(s):  
J. J. Williams ◽  
N. C. Chapman ◽  
V. Jakkali ◽  
V. A. Tanna ◽  
N. Chawla ◽  
...  

2011 ◽  
Vol 1 (SRMS-7) ◽  
Author(s):  
E. Liotti ◽  
S. C. Hogg ◽  
C.A. Kirk ◽  
P. Quinn ◽  
P. S. Grant

Al3Ti, Al13Cr2 and Al13Fe4 are important intermetallics in a number of Al alloy systems including complex ultra-high-strength systems with excellent elevated-temperature performance. A full knowledge of their properties and crystallographic structures is a key factor for the understanding of these complex alloys. In the present study samples of the three pure intermetallics were prepared and regions of interest identified in a billet of Al93Fe3Cr2Ti2 alloys and 20 × 10 × 2 µm samples extracted utilizing a Focussed Ion Beam Transmission Electron Microscopy (FIB TEM) sample preparation technique. Using the microfocus spectroscopy beamline I18 at Diamond Light Source we were able to examine 5 µm sections of the samples using X-ray Diffraction (μ-XRD) and Extended X-ray Absorption Fine Structure (μ-EXAFS) in an attempt to describe the local structure of the second-phase particles and characterized the microstructure of the FIBed samples to selectively illuminate the different phases.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 421
Author(s):  
Binwei Zheng ◽  
Weiwei Zhang ◽  
Litao Guan ◽  
Jin Gu ◽  
Dengyun Tu ◽  
...  

A high strength recycled newspaper (NP)/high density polyethylene (HDPE) laminated composite was developed using NP laminas as reinforcement and HDPE film as matrix. Herein, NP fiber was modified with stearic acid (SA) to enhance the water resistance of the NP laminas and NP/HDPE composite. The effects of heat treatment and SA concentration on the water resistance and tensile property of NP and composite samples were investigated. The chemical structure of the NP was characterized with X-ray diffractometer, X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectra techniques. The surface and microstructure of the NP sheets were observed by scanning electron microscopy. An expected high-water resistance of NP sheets was achieved due to a chemical bonding that low surface energy SA were grafted onto the modified NP fibers. Results showed that the hydrophobicity of NP increased with increasing the stearic acid concentration. The water resistance of the composite laminates was depended on the hydrophobicity of the NP sheets. The lowest value of 2 h water absorption rate (3.3% ± 0.3%) and thickness swelling rate (2.2% ± 0.4%) of composite were obtained when the SA concentration was 0.15 M. In addition, the introduction of SA can not only enhance the water resistance of the composite laminates, but also reduce the loss of tensile strength in wet conditions, which shows potential in outdoor applications.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 526
Author(s):  
Zhengyuan Li ◽  
Lijia Chen ◽  
Haoyu Zhang ◽  
Siyu Liu

The oxidation behavior and microstructural evolution of the nanostructure of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys prepared by spark plasma sintering were investigated by high-temperature oxidation experiments in air at 1200 °C for 100 h. The formation of Al2O3 scale was observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) line scans. The oxidation rate of Fe-Cr-Al ODS alloys is lower than that of conventional Fe-Cr-Al alloys, and the oxide layer formed on the Fe-Cr-Al alloy appeared loose and cracked, whereas the oxide layer formed on the Fe-Cr-Al ODS alloys was adherent and flat. This is due to the high density of dispersed nano-oxides hindering the diffusion of Al element and the formation of vacancies caused by them. In addition, the nano-oxides could also adhere to the oxide layer. Besides, the microstructure of the Fe-Cr-Al ODS alloy had excellent stability during high-temperature oxidation.


2012 ◽  
Vol 727-728 ◽  
pp. 1387-1392 ◽  
Author(s):  
Luan M. Medeiros ◽  
Fernando S. Silva ◽  
Juliana Marchi ◽  
Walter Kenji Yoshito ◽  
Dolores Ribeiro Ricci Lazar ◽  
...  

Zirconium dioxide (zirconia) ceramics are known by its high strength and toughness and titanium dioxide (titania) ceramics has outstanding surface properties. The ceramic composite formed between the two oxides are expected to have advantages of both ceramics, especially when its surface area is increased by pores. In this work, ceramic composites of ZrO2-Y2O3-TiO2were synthesized by coprecipitation and rice starch was added as pore former in 10, 20 and 30 wt%. Powders were cold pressed as cylindrical pellets and sintered at 1500 °C for 01 hour and ceramics were characterized by techniques as Archimedes method for density measurements, X-ray diffraction and scanning electron microscopy. Results showed that pores are inhomogeneously distributed through ceramic bodies.


2010 ◽  
Vol 146-147 ◽  
pp. 1402-1405 ◽  
Author(s):  
Che Lah Nur Azida ◽  
Azman Jalar ◽  
Norinsan Kamil Othman ◽  
Nasrizal Mohd Rashdi ◽  
Md Zaukah Ibel

AA6061 Aluminum alloy welded joint using two different filler metals were studied by using X-ray CT-Scan. The filler metals ER 4043 and ER 5356 were used in this present work in order to investigate the effect of using different filler metals on the welded joint quality of AA 6061 aluminum alloy in welded zone microstructure. Gas metal arc welding (GMAW) technique and V grove butt joint with four layers and five passes welded joint were performed. From this investigation, it is found that AA6061 with ER 4043 showed less distribution of porosity compared to AA6061 with ER 5356 welded joint confirmed by X-ray Ct-Scan. The decreasing of porosities and presence of very fine grains in weld region area with ER 5356 compared to ER 4043 will be discussed in term of microstructure analysis.


Sign in / Sign up

Export Citation Format

Share Document