Tropical Cyclones and Forest Dynamics Under a Changing Climate: What Are the Long-Term Implications for Tropical Forest Canopies in the Cyclone Belt?

2013 ◽  
pp. 105-111 ◽  
Author(s):  
Stephen M. Turton
Trees ◽  
2010 ◽  
Vol 25 (1) ◽  
pp. 115-124 ◽  
Author(s):  
Danaë M. A. Rozendaal ◽  
Claudia C. Soliz-Gamboa ◽  
Pieter A. Zuidema

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 734
Author(s):  
Xiankai Lu ◽  
Qinggong Mao ◽  
Zhuohang Wang ◽  
Taiki Mori ◽  
Jiangming Mo ◽  
...  

Anthropogenic elevated nitrogen (N) deposition has an accelerated terrestrial N cycle, shaping soil carbon dynamics and storage through altering soil organic carbon mineralization processes. However, it remains unclear how long-term high N deposition affects soil carbon mineralization in tropical forests. To address this question, we established a long-term N deposition experiment in an N-rich lowland tropical forest of Southern China with N additions such as NH4NO3 of 0 (Control), 50 (Low-N), 100 (Medium-N) and 150 (High-N) kg N ha−1 yr−1, and laboratory incubation experiment, used to explore the response of soil carbon mineralization to the N additions therein. The results showed that 15 years of N additions significantly decreased soil carbon mineralization rates. During the incubation period from the 14th day to 56th day, the average decreases in soil CO2 emission rates were 18%, 33% and 47% in the low-N, medium-N and high-N treatments, respectively, compared with the Control. These negative effects were primarily aroused by the reduced soil microbial biomass and modified microbial functions (e.g., a decrease in bacteria relative abundance), which could be attributed to N-addition-induced soil acidification and potential phosphorus limitation in this forest. We further found that N additions greatly increased soil-dissolved organic carbon (DOC), and there were significantly negative relationships between microbial biomass and soil DOC, indicating that microbial consumption on soil-soluble carbon pool may decrease. These results suggests that long-term N deposition can increase soil carbon stability and benefit carbon sequestration through decreased carbon mineralization in N-rich tropical forests. This study can help us understand how microbes control soil carbon cycling and carbon sink in the tropics under both elevated N deposition and carbon dioxide in the future.


2021 ◽  
Vol 38 (10) ◽  
pp. 1791-1802
Author(s):  
Peiyan Chen ◽  
Hui Yu ◽  
Kevin K. W. Cheung ◽  
Jiajie Xin ◽  
Yi Lu

AbstractA dataset entitled “A potential risk index dataset for landfalling tropical cyclones over the Chinese mainland” (PRITC dataset V1.0) is described in this paper, as are some basic statistical analyses. Estimating the severity of the impacts of tropical cyclones (TCs) that make landfall on the Chinese mainland based on observations from 1401 meteorological stations was proposed in a previous study, including an index combining TC-induced precipitation and wind (IPWT) and further information, such as the corresponding category level (CAT_IPWT), an index of TC-induced wind (IWT), and an index of TC-induced precipitation (IPT). The current version of the dataset includes TCs that made landfall from 1949–2018; the dataset will be extended each year. Long-term trend analyses demonstrate that the severity of the TC impacts on the Chinese mainland have increased, as embodied by the annual mean IPWT values, and increases in TCinduced precipitation are the main contributor to this increase. TC Winnie (1997) and TC Bilis (2006) were the two TCs with the highest IPWT and IPT values, respectively. The PRITC V1.0 dataset was developed based on the China Meteorological Administration’s tropical cyclone database and can serve as a bridge between TC hazards and their social and economic impacts.


Geoderma ◽  
2017 ◽  
Vol 285 ◽  
pp. 57-63 ◽  
Author(s):  
Qinggong Mao ◽  
Xiankai Lu ◽  
Kaijun Zhou ◽  
Hao Chen ◽  
Xiaomin Zhu ◽  
...  

PLoS ONE ◽  
2010 ◽  
Vol 5 (3) ◽  
pp. e9534 ◽  
Author(s):  
Allison K. Leidner ◽  
Nick M. Haddad ◽  
Thomas E. Lovejoy

1999 ◽  
Vol 13 (2) ◽  
pp. 503-517 ◽  
Author(s):  
Corinne Galy-Lacaux ◽  
Robert Delmas ◽  
Georges Kouadio ◽  
Sandrine Richard ◽  
Philippe Gosse

2021 ◽  
Author(s):  
Laurent Lambert ◽  
Mahmood Almehdhar ◽  
Mustafa Haji

<p><strong>Abstract</strong>: Changes in the global oceanic system have already negatively affected the world’s marine life and the livelihoods of many coastal communities across the world, including in the Middle East' and Eastern Africa's Least Developed Countries (LDCs). Coastal communities in Somalia and Yemen for instance, have been particularly affected by extreme environmental events (EEEs), with an increase in the frequency of tropical cyclones over the past 20 years. Using expert elicitation as a method to generate data to assess and quantify a specific issue in the absence of sufficient and/or reliable data, the authors interviewed selected specialists in or from Somalia and Yemen, from diverse fields of expertise related to climate change, extreme environmental events, disaster risk reduction, and humanitarian affairs. Ten experts followed the elicitation protocol and answered a specific series of questions in order to better quantify the expectable mid-to-long-term climatic and humanitarian levels of risks, impacts, and consequences that climate change and related issues (e.g., sea-level rise, tropical cyclones, and sea surge) may generate in coastal areas along the Gulf of Aden's coastal cities of Aden and Bossaso, in Yemen and Somalia, respectively.</p><p>The findings indicate that there is cause for significant concern as climate change is assessed by all interviewees - irrespective of their background -, as very likely to hold a negative to a devastating impact on (fresh) water security, food security, public health, social conflicts, population displacement, and eventually political stability; and to strongly worsen the humanitarian situations in Somalia and Yemen, both in the medium-term (i.e., 2020-2050) and the long-term (i.e., 2020-2100). The authors call on the scientific community to further research the issue of climate change in the understudied coastal areas of the Gulf of Aden, and on the international community to pro-actively and urgently help the local populations and relevant authorities to rapidly and strongly build up their adaptation capacities, especially in the niche of coastal EEEs.</p>


2018 ◽  
Vol 373 (1760) ◽  
pp. 20170315 ◽  
Author(s):  
Cleiton B. Eller ◽  
Lucy Rowland ◽  
Rafael S. Oliveira ◽  
Paulo R. L. Bittencourt ◽  
Fernanda V. Barros ◽  
...  

The current generation of dynamic global vegetation models (DGVMs) lacks a mechanistic representation of vegetation responses to soil drought, impairing their ability to accurately predict Earth system responses to future climate scenarios and climatic anomalies, such as El Niño events. We propose a simple numerical approach to model plant responses to drought coupling stomatal optimality theory and plant hydraulics that can be used in dynamic global vegetation models (DGVMs). The model is validated against stand-scale forest transpiration ( E ) observations from a long-term soil drought experiment and used to predict the response of three Amazonian forest sites to climatic anomalies during the twentieth century. We show that our stomatal optimization model produces realistic stomatal responses to environmental conditions and can accurately simulate how tropical forest E responds to seasonal, and even long-term soil drought. Our model predicts a stronger cumulative effect of climatic anomalies in Amazon forest sites exposed to soil drought during El Niño years than can be captured by alternative empirical drought representation schemes. The contrasting responses between our model and empirical drought factors highlight the utility of hydraulically-based stomatal optimization models to represent vegetation responses to drought and climatic anomalies in DGVMs. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3358
Author(s):  
Patrik Sleziak ◽  
Roman Výleta ◽  
Kamila Hlavčová ◽  
Michaela Danáčová ◽  
Milica Aleksić ◽  
...  

The changing climate is a concern with regard to sustainable water resources. Projections of the runoff in future climate conditions are needed for long-term planning of water resources and flood protection. In this study, we evaluate the possible climate change impacts on the runoff regime in eight selected basins located in the whole territory of Slovakia. The projected runoff in the basins studied for the reference period (1981–2010) and three future time horizons (2011–2040, 2041–2070, and 2071–2100) was simulated using the HBV (Hydrologiska Byråns Vattenbalansavdelning) bucket-type model (the TUW (Technische Universität Wien) model). A calibration strategy based on the selection of the most suitable decade in the observation period for the parameterization of the model was applied. The model was first calibrated using observations, and then was driven by the precipitation and air temperatures projected by the KNMI (Koninklijk Nederlands Meteorologisch Instituut) and MPI (Max Planck Institute) regional climate models (RCM) under the A1B emission scenario. The model’s performance metrics and a visual inspection showed that the simulated runoff using downscaled inputs from both RCM models for the reference period represents the simulated hydrological regimes well. An evaluation of the future, which was performed by considering the representative climate change scenarios, indicated that changes in the long-term runoff’s seasonality and extremality could be expected in the future. In the winter months, the runoff should increase, and decrease in the summer months compared to the reference period. The maximum annual daily runoff could be more extreme for the later time horizons (according to the KNMI scenario for 2071–2100). The results from this study could be useful for policymakers and river basin authorities for the optimum planning and management of water resources under a changing climate.


Sign in / Sign up

Export Citation Format

Share Document