The ß-Cell Sulfonylurea Receptor

Author(s):  
Stephen J. H. Ashcroft ◽  
Ichiro Niki ◽  
Sue Kenna ◽  
Ling Weng ◽  
Jackie Skeer ◽  
...  
2004 ◽  
Vol 101 (2) ◽  
pp. 390-398 ◽  
Author(s):  
Takashi Kawano ◽  
Shuzo Oshita ◽  
Akira Takahashi ◽  
Yasuo Tsutsumi ◽  
Yoshinobu Tomiyama ◽  
...  

Background Sarcolemmal adenosine triphosphate-sensitive potassium (KATP) channels in the cardiovascular system may be involved in bupivacaine-induced cardiovascular toxicity. The authors investigated the effects of local anesthetics on the activity of reconstituted KATP channels encoded by inwardly rectifying potassium channel (Kir6.0) and sulfonylurea receptor (SUR) subunits. Methods The authors used an inside-out patch clamp configuration to investigate the effects of bupivacaine, levobupivacaine, and ropivacaine on the activity of reconstituted KATP channels expressed in COS-7 cells and containing wild-type, mutant, or chimeric SURs. Results Bupivacaine inhibited the activities of cardiac KATP channels (IC50 = 52 microm) stereoselectively (levobupivacaine, IC50 = 168 microm; ropivacaine, IC50 = 249 microm). Local anesthetics also inhibited the activities of channels formed by the truncated isoform of Kir6.2 (Kir6.2 delta C36) stereoselectively. Mutations in the cytosolic end of the second transmembrane domain of Kir6.2 markedly decreased both the local anesthetics' affinity and stereoselectivity. The local anesthetics blocked cardiac KATP channels with approximately eightfold higher potency than vascular KATP channels; the potency depended on the SUR subtype. The 42 amino acid residues at the C-terminal tail of SUR2A, but not SUR1 or SUR2B, enhanced the inhibitory effect of bupivacaine on the Kir6.0 subunit. Conclusions Inhibitory effects of local anesthetics on KATP channels in the cardiovascular system are (1) stereoselective: bupivacaine was more potent than levobupivacaine and ropivacaine; and (2) tissue specific: local anesthetics blocked cardiac KATP channels more potently than vascular KATP channels, via the intracellular pore mouth of the Kir6.0 subunit and the 42 amino acids at the C-terminal tail of the SUR2A subunit, respectively.


Diabetes ◽  
1999 ◽  
Vol 48 (2) ◽  
pp. 408-415 ◽  
Author(s):  
T. Otonkoski ◽  
C. Ammala ◽  
H. Huopio ◽  
G. J. Cote ◽  
J. Chapman ◽  
...  

2015 ◽  
Vol 32 (19) ◽  
pp. 1478-1487 ◽  
Author(s):  
Tamara Martínez-Valverde ◽  
Marian Vidal-Jorge ◽  
Elena Martínez-Saez ◽  
Lidia Castro ◽  
Fuat Arikan ◽  
...  

2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Masamichi Hirose ◽  
Yasuchika Takeishi ◽  
Hisashi Shimojo ◽  
Toshihide Kashihara ◽  
Tsutomu Nakada ◽  
...  

Introduction: Beneficial effects of nicorandil on the treatment of hypertensive heart failure (HF) and ischemic heart disease have been suggested. However, whether nicorandil has inhibitory effects on HF and ventricular arrhythmias caused by the activation of G protein alpha q (Gαq) -coupled receptor (GPCR) signaling pathway still remains unknown. We examined effects of chronic and acute administration of nicorandil on the development of HF and ventricular action potential (VAP) in transgenic mice with transient cardiac expression of activated Gαq (Gαq-TG), respectively. Method and Results: Nicorandil (6 mg/kg/day) or vehicle was chronically administered in Gαq-TG mice for 24 weeks from 8 weeks of age, and then ventricular function, and electrical and structural changes were investigated in the hearts. Chronic nicorandil administration improved the reduction of left ventricular fractional shortening (p < 0.001) in Gαq-TG hearts. During 10 min of electrocardiogram recording, premature ventricular contractions (more than 20 beats/min) were observed in 7 of 10 vehicle-treated Gαq-TG but in none of 10 nicorandil-treated Gαq-TG hearts (p < 0.01). QT interval was significantly shorter in nicorandil-treated Gαq-TG than in vehicle-treated Gαq-TG hearts (p < 0.05). Chronic nicorandil administration improved the increased ventricular interstitial fibrosis (p < 0.05) but not cardiac hypertrophy in Gαq-TG left ventricles. Real time RT-PCR revealed that mRNA expression levels of s sulfonylurea receptor 2B (SUR-2B) were decreased in vehicle-treatd Gαq-TG but not in nicorandil-treated Gαq-TG. In addition, chronic nicorandil increased endotherial nitric oxide syntheses gene expression in Gαq-TG hearts (p < 0.05). Acute nicorandil administration (1 microM) significantly shortened the prolonged VAP duration and reduced the number of PVCs in vehicle treated Gαq-TG hearts. Conclusions: These findings suggest that nicorandil inhibits ventricular electrical and structural remodeling and arrhythmias through the shortening of VAP duration and the increased expression of SUR-2B and eNOS in a mouse model of HF.


2021 ◽  
Author(s):  
Swathi Tata ◽  
Benjamin E Zusman ◽  
Patrick M. Kochanek ◽  
Volodymyr Gerzanich ◽  
Min Seong Kwon ◽  
...  

1993 ◽  
Vol 265 (2) ◽  
pp. C337-C342 ◽  
Author(s):  
S. Hayashi ◽  
M. Horie ◽  
Y. Tsuura ◽  
H. Ishida ◽  
Y. Okada ◽  
...  

An antiarrhythmic agent, disopyramide, was found to enhance the insulin secretory capacity of Wistar rat pancreatic islets with a half-maximal concentration of 23.3 microM. Employing a patch-clamp technique, disopyramide was found to inhibit ATP-sensitive K+ (KATP) channel activity in rat pancreatic beta-cells in primary culture without altering the unitary conductance. Half-maximal inhibition was achieved by the addition of 3.6 microM disopyramide to the intracellular bathing solution in the inside-out mode, 11.0 microM to the extracellular bathing solution in the outside-out mode, and 87.4 microM in the cell-attached mode. The binding of [3H]glibenclamide to pancreatic islets was inhibited by unlabeled glibenclamide but not by unlabeled disopyramide. Based on these observations, it is concluded that disopyramide blocks pancreatic KATP channels via binding to a site(s) distinct from the sulfonylurea receptor. This effect may be causatively involved in disopyramide-induced hypoglycemia.


1998 ◽  
Vol 274 (1) ◽  
pp. C25-C37 ◽  
Author(s):  
Hisashi Yokoshiki ◽  
Masanori Sunagawa ◽  
Takashi Seki ◽  
Nicholas Sperelakis

ATP-sensitive K+(KATP) channels are therapeutic targets for several diseases, including angina, hypertension, and diabetes. This is because stimulation of KATP channels is thought to produce vasorelaxation and myocardial protection against ischemia, whereas inhibition facilitates insulin secretion. It is well known that native KATP channels are inhibited by ATP and sulfonylurea (SU) compounds and stimulated by nucleotide diphosphates and K+channel-opening drugs (KCOs). Although these characteristics can be shared with KATP channels in different tissues, differences in properties among pancreatic, cardiac, and vascular smooth muscle (VSM) cells do exist in terms of the actions produced by such regulators. Recent molecular biology and electrophysiological studies have provided useful information toward the better understanding of KATPchannels. For example, native KATPchannels appear to be a complex of a regulatory protein containing the SU-binding site [sulfonylurea receptor (SUR)] and an inward-rectifying K+ channel (Kir) serving as a pore-forming subunit. Three isoforms of SUR (SUR1, SUR2A, and SUR2B) have been cloned and found to have two nucleotide-binding folds (NBFs). It seems that these NBFs play an essential role in conferring the MgADP and KCO sensitivity to the channel, whereas the Kir channel subunit itself possesses the ATP-sensing mechanism as an intrinsic property. The molecular structure of KATPchannels is thought to be a heteromultimeric (tetrameric) assembly of these complexes: Kir6.2 with SUR1 (SUR1/Kir6.2, pancreatic type), Kir6.2 with SUR2A (SUR2A/Kir6.2, cardiac type), and Kir6.1 with SUR2B (SUR2B/Kir6.1, VSM type) [i.e., (SUR/Kir6. x)4]. It remains to be determined what are the molecular connections between the SUR and Kir subunits that enable this unique complex to work as a functional KATP channel.


1999 ◽  
Vol 56 (2) ◽  
pp. 308-315 ◽  
Author(s):  
Nathalie D’hahan ◽  
Hélène Jacquet ◽  
Christophe Moreau ◽  
Patrice Catty ◽  
Michel Vivaudou

Sign in / Sign up

Export Citation Format

Share Document