The Muon Anomalous g-Value

1987 ◽  
pp. 271-285 ◽  
Author(s):  
Vernon W. Hughes
Keyword(s):  
1996 ◽  
Vol 452 ◽  
Author(s):  
N. H. Nickel ◽  
E. A. Schiff

AbstractThe temperature dependence of the silicon dangling-bond resonance in polycrystalline (poly-Si) and amorphous silicon (a-Si:H) was measured. At room temperature, electron paramagnetic resonance (EPR) measurements reveal an isotropie g-value of 2.0055 and a line width of 6.5 and 6.1 G for Si dangling-bonds in a-Si:H and poly-Si, respectively. In both materials spin density and g-value are independent of temperature. While in a-Si:H the width of the resonance did not change with temperature, poly-Si exhibits a remarkable T dependence of ΔHpp. In unpassivated poly-Si a pronounced decrease of ΔHpp is observed for temperatures above 300 K. At 384 K ΔHpp reaches a minimum of 5.1 G, then increases to 6.1 G at 460 K, and eventually decreases to 4.6 G at 530 K. In hydrogenated poly-Si ΔHpp decreases monotonically above 425 K. The decrease of ΔHpp is attributed to electron hopping causing motional narrowing. An average hopping distance of 15 and 17.5 Å was estimated for unhydrogenated and H passivated poly-Si, respectively.


Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 98
Author(s):  
Chao-Yong Shen ◽  
Xiang-Yun Huang ◽  
Yang-Yang Chen ◽  
Yu-Hong Ma

In this research we conducted a sensitivity experimental study where we explored the dependency of the shear strain on the seismic properties of bearings, namely lead rubber bearing (LRB) and super high damping rubber bearing (SHDR). The factors studied were vertical pressure, temperature, shear modulus of the inner rubber (G value), loading frequency, and loading sequence. Six specimens were adopted, i.e., three LRBs and three SHDR bearings. A series of test plans were designed. The seismic characteristics of the bearings were captured through a cyclic loading test, which included post-yield stiffness, characteristic strength, area of a single cycle of the hysteretic loop, equivalent stiffness, and equivalent damping ratio. A whole analysis of variances was then conducted. At the same time, to explore certain phenomena caused by the factors, an extended discussion was carried out. Test results showed that the temperature is the most dominant feature, whereas the G value is the least contributing factor, with the effect of the loading frequency and the loading sequence found between these two. The increment of the post-yielded stiffness for LRB from 100% to 25% is a significant reduction from a low temperature to high one. The slope of the characteristic strength versus the shear strain for LRB under high temperature is larger than the one under low temperature.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2755
Author(s):  
Kyuhwe Kang ◽  
Gyung-Min Choi

The electron-phonon coupling (g) parameter plays a critical role in the ultrafast transport of heat, charge, and spin in metallic materials. However, the exact determination of the g parameter is challenging because of the complicated process during the non-equilibrium state. In this study, we investigate the g parameters of ferromagnetic 3d transition metal (FM) layers, Fe and Co, using time-domain thermoreflectance. We measure a transient increase in temperature of Au in an FM/Au bilayer; the Au layer efficiently detects the strong heat flow during the non-equilibrium between electrons and phonons in FM. The g parameter of the FM is determined by analyzing the temperature dynamics using thermal circuit modeling. The determined g values are 8.8–9.4 × 1017 W m−3 K−1 for Fe and 9.6–12.2 × 1017 W m−3 K−1 for Co. Our results demonstrate that all 3d transition FMs have a similar g value, in the order of 1018 W m−3 K−1.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 47-55
Author(s):  
N.-S. Park ◽  
H. Park

Recognizing the significance of factual velocity fields in a rapid mixer, this study focuses on analyzing local velocity gradients in various mixer geometries with particle image velocimetry (PIV) and comparing the results of the analysis with the conventional G-value, for reviewing the roles of G-value in the current design and operation practices. The results of this study clearly show that many arguments and doubts are possible about the scientific correctness of G-value, and its current use. This is because the G-value attempts to represent the turbulent and complicated factual velocity field in a jar. Also, the results suggest that it is still a good index for representing some aspects of mixing condition, at least, mixing intensity. However, it cannot represent the distribution of velocity gradients in a jar, which is an important factor for mixing. This study as a result suggests developing another index for representing the distribution to be used with the G-value.


1968 ◽  
Vol 46 (20) ◽  
pp. 3235-3240 ◽  
Author(s):  
Gordon R. Freeman ◽  
E. Diane Stover

The initial yields of the major products of the gamma radiolysis of liquid methylcyclopentane (MCP) at 25° are: G(H2) = 4.2, G(1-methylcyclopentene plus methylenecyclopentane) = 2.7, G(3- plus 4-methyl-cyclopentene) = 1.0, G(open chain hexene) = 1.0, and G(bimethylcyclopentyl) = 0.9. The effects of scavengers on the product yields are reported and the mechanism is discussed.The liquid phase radiolytic decompositions of cyclohexane (CH), methylcyclohexane (MCH), cyclopentane (CP), and MCP are compared. The net amount of C—C bond cleavage is much greater in the five-membered than in the six-membered rings. Methyl substitution on the ring reduces G(H2) by about one unit, mainly because of the formation of a type of ion (QH+) that does not yield hydrogen when neutralized by an electron. The QH+ type ions are formed in MCH and MCP, but not in CH and CP. In all the systems, another type of ion (N+) that does not yield hydrogen when neutralized by an electron is formed with a G value of about unity. The type of ion (PH+) that does yield hydrogen when neutralized by an electron has a G value of 3.4 in CH and CP, but only 2.0 in MCP. It is concluded that G(total ionization) is in the vicinity of 4.4 in the liquid compounds, virtually the same as the gas phase values.


2013 ◽  
Vol 336-338 ◽  
pp. 281-285
Author(s):  
Yong Liang Wang ◽  
Wen Guo Chen ◽  
Zhao Yu Wang ◽  
Gui Fu Ding ◽  
Xiao Lin Zhao

A novel horizontal sensitive inertial micro-switch with low g value was proposed and simulated in ANSYS, and was fabricated on quartz substrate based on non-silicon surface micromaching technology. Due to this special design, the micro-switch has a very good horizontal unidirectional sensitivity. The contact effect is improved by a modification of the traditional design. The flexible contact between the proof mass electrode and fixed electrode prolongs the contact time and reduces the rebound effect. The contact time is about 100μs under a half-sine wave shock with a12g peak value.


1963 ◽  
Vol 41 (6) ◽  
pp. 1578-1587 ◽  
Author(s):  
Jan A. Herman ◽  
Pierre M. Hupin

The polymerization of vinyl chloride in the gas phase by X rays gives a solid polymer of 1140 average molecular weight. The G value of monomer disappearance varies from 100 to 400 and depends on pressure and temperature. From the measure of the rate of polymerization it was possible to deduce the activation energy of the chain propagation steps: 2.5 kcal/mole, and that of the hindered termination process: 7.4 kcal/mole. The negative temperature co-efficient of the polymerization is explained by the importance of this hindered termination process.


2016 ◽  
Vol 858 ◽  
pp. 513-517 ◽  
Author(s):  
Mark A. Anders ◽  
Patrick M. Lenahan ◽  
Aivars J. Lelis

We utilize electrically detected magnetic resonance and “on-the-fly” elevated temperature stressing to examine the effects of negative bias temperature stress on defects within the “bulk” SiC, that is, below the SiC/SiO2 interface. We observe generation of two temperature-dependent defects; one has a two (or three) line spectrum with lines separated by about 61 (30) Gauss when the SiC/SiO2 interface is perpendicular to the magnetic field and very slightly less, about 59 (30) Gauss when the SiC/SiO2 interface is parallel to the field. The second spectrum has a single line with zero-crossing g = 2.0118 when the magnetic field is nearly perpendicular to the SiC/SiO2 interface; the g-value drops to about 2.0016 with the field parallel to the SiC/SiO2 interface. We also observe strong evidence for hydrogen motion within the “bulk” SiC, as both spectra broaden significantly at elevated temperature, with broadening at both high and low fields and frequencies.


Sign in / Sign up

Export Citation Format

Share Document