Structure and Expression during Development of Artemia c-ras Genes

Author(s):  
M. Díaz-Guerra ◽  
A. Gandarillas ◽  
M. Quintanilla ◽  
J. Renart
Keyword(s):  
2002 ◽  
Vol 3 (4) ◽  
pp. 295-311 ◽  
Author(s):  
Jose Rojas ◽  
Eugenio Santos
Keyword(s):  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Salvatore Sciacchitano ◽  
Andrea Sacconi ◽  
Claudia De Vitis ◽  
Giovanni Blandino ◽  
Giulia Piaggio ◽  
...  

AbstractRas gene family members play a relevant role in cancer, especially when they are mutated. However, they may play additional roles in other conditions beside cancer. We performed gene expression analysis using the NanoString PanCancer IO 360 panel in the peripheral blood mononuclear cell (PBMC) of six COVID-19 patients and we found that H-Ras gene was significantly upregulated, while both K-Ras and N-Ras genes were downregulated. In particular, H-Ras gene upregulation was more evident in COVID-19 patients with a more severe disease. We compared our results with those obtained by analyzing two different and independent datasets, including a total of 53 COVID-19 patients, in which the gene expression analysis was performed using the Immunology_V2 panel. Comparative analysis of the H-Ras gene expression in these patients confirmed our preliminary results. In both of them, in fact, we were able to confirm the upregulation of the expression of the H-Ras gene. The exact role of this specific upregulation of the H-Ras gene in response to SARS-CoV-2 infection and its possible role in cancer still remains to be elucidated. In conclusion, H-Ras gene participates to the host immune response to SARS-CoV-2 virus infection, especially in patients affected by the most severe form of the COVID-19.


2021 ◽  
Vol 22 (12) ◽  
pp. 6508
Author(s):  
Arathi Nair ◽  
Katharina F. Kubatzky ◽  
Bhaskar Saha

The central protein in the oncogenic circuitry is the Ras GTPase that has been under intense scrutiny for the last four decades. From its discovery as a viral oncogene and its non–oncogenic contribution to crucial cellular functioning, an elaborate genetic, structural, and functional map of Ras is being created for its therapeutic targeting. Despite decades of research, there still exist lacunae in our understanding of Ras. The complexity of the Ras functioning is further exemplified by the fact that the three canonical Ras genes encode for four protein isoforms (H-Ras, K-Ras4A, K-Ras4B, and N-Ras). Contrary to the initial assessment that the H-, K-, and N-Ras isoforms are functionally similar, emerging data are uncovering crucial differences between them. These Ras isoforms exhibit not only cell–type and context-dependent functions but also activator and effector specificities on activation by the same receptor. Preferential localization of H-, K-, and N-Ras in different microdomains of the plasma membrane and cellular organelles like Golgi, endoplasmic reticulum, mitochondria, and endosome adds a new dimension to isoform-specific signaling and diverse functions. Herein, we review isoform-specific properties of Ras GTPase and highlight the importance of considering these towards generating effective isoform-specific therapies in the future.


2011 ◽  
Vol 12 (4) ◽  
pp. 549-556 ◽  
Author(s):  
Nurdan Papila Topal ◽  
Beste Ozben ◽  
Veysel Sabri Hancer ◽  
Azra Meryem Tanrikulu ◽  
Reyhan Diz-Kucukkaya ◽  
...  

Activation of the renin–angiotensin system (RAS) is associated with atrial fibrillation (AF). The aim of this study was to investigate the relation between AF and polymorphisms in RAS. One hundred and fifty patients with AF, 100 patients with no documented episode of AF and 100 healthy subjects were consecutively recruited into the study. The angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism, and the M235T, A-20C, and G-6A polymorphisms of the angiotensinogen gene were genotyped. Patients with AF had significantly lower frequency of II genotype of ACE I/D and higher frequency of angiotensinogen M235T polymorphism T allele and TT genotype and G-6A polymorphism G allele and GG genotype compared with the controls. AF patients had significantly larger left atrium, higher left ventricular mass index (LVMI) and higher frequency of significant valvular pathology. ACE I/D polymorphism II genotype, angiotensinogen M235T polymorphism TT genotype and G allele and GG genotype of angiotensinogen G-6A polymorphism were still independently associated with AF when adjusted for left atrium, LVMI and presence of significant valvular pathology. Genetic predisposition might be underlying the prevalence of acquired AF. Patients with a specific genetic variation in the RAS genes may be more liable to develop AF.


Oncogene ◽  
2007 ◽  
Vol 27 (21) ◽  
pp. 2961-2968 ◽  
Author(s):  
K Nakamura ◽  
H Ichise ◽  
K Nakao ◽  
T Hatta ◽  
H Otani ◽  
...  

1984 ◽  
Vol 4 (8) ◽  
pp. 1647-1652 ◽  
Author(s):  
L S Ulsh ◽  
T Y Shih

The EJ bladder carcinoma oncogene is activated by a point mutation in the c-rasH proto-oncogene at the 12th amino acid codon. In an attempt to understand the mechanism of oncogenic activation, a comparative study was undertaken to examine the metabolic turnover and subcellular localization of the p21 protein encoded by the EJ oncogene, the viral oncogene, and its normal cellular homolog. Pulse-labeling experiments indicated that both c-ras p21 proteins were synthesized by a very similar pathway, as was observed for the viral p21 protein of Harvey murine sarcoma virus. The pro-p21 proteins were detected in free cytosol, and the processed products were associated with plasma membrane. The intracellular half-life of p21 proteins was determined by pulse-labeling and chasing in the presence of excess unlabeled methionine. Although both p21 proteins of EJ and the normal c-ras genes which are not phosphorylated have a half-life of 20 h, the viral p21 protein of Harvey murine sarcoma virus which includes a phosphorylated form is much more stable in cells, having a half-life of 42 h, apparently due to phosphorylation.


1991 ◽  
Vol 130 (2) ◽  
pp. 239-244 ◽  
Author(s):  
N. K. Green ◽  
M. D. Gammage ◽  
J. A. Franklyn ◽  
M. C. Sheppard

ABSTRACT Effects of thyroid status on expression of a variety of myocardial genes, such as those encoding contractile proteins, have been reported, as well as interactions between thyroid hormones and developmental and haemodynamic regulation of contractile protein synthesis. In addition, it is clear that developmental and haemodynamic factors regulate expression of specific proto-oncogenes, including c-myc, c-fos and H-ras, in the myocardium but the effect of thyroid status on such proto-oncogene products, which are proposed to play a critical signal-transducing role in the heart, has been previously unexplored. In order to determine whether changes in thyroid status are associated with changes in expression of these putative intracellular signals, we examined the effect of hypothyroidism and tri-iodothyronine (T3) treatment on myocardial levels of c-myc, c-fos and H-ras mRNAs in the rat. The induction of hypothyroidism was associated with a marked increase in myocardial c-myc, c-fos and H-ras mRNAs, changes reversed by 72 h of T3 replacement. Administration of T3 to euthyroid rats had no significant effect on myocardial c-myc or c-fos mRNAs, but inhibition of H-ras mRNA by T3 was evident. These observations demonstrating influences of thyroid status on expression of specific proto-oncogenes suggest that thyroid hormones, as well as exerting direct effects on expression of functionally important myocardial genes, also interact with the cellular transduction pathways mediated by the products of the c-myc, c-fos and H-ras genes. Journal of Endocrinology (1991) 130, 239–244


2016 ◽  
Vol 311 (2) ◽  
pp. H404-H414 ◽  
Author(s):  
Carlos M. Ferrario ◽  
Sarfaraz Ahmad ◽  
Jasmina Varagic ◽  
Che Ping Cheng ◽  
Leanne Groban ◽  
...  

Although it is well-known that excess renin angiotensin system (RAS) activity contributes to the pathophysiology of cardiac and vascular disease, tissue-based expression of RAS genes has given rise to the possibility that intracellularly produced angiotensin II (Ang II) may be a critical contributor to disease processes. An extended form of angiotensin I (Ang I), the dodecapeptide angiotensin-(1–12) [Ang-(1–12)], that generates Ang II directly from chymase, particularly in the human heart, reinforces the possibility that an alternative noncanonical renin independent pathway for Ang II formation may be important in explaining the mechanisms by which the hormone contributes to adverse cardiac and vascular remodeling. This review summarizes the work that has been done in evaluating the functional significance of Ang-(1–12) and how this substrate generated from angiotensinogen by a yet to be identified enzyme enhances knowledge about Ang II pathological actions.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 1034-1034
Author(s):  
Justin Wayne Wong Tiu-lim ◽  
Jun Yin ◽  
Joanne Xiu ◽  
Wolfgang Michael Korn ◽  
Heinz-Josef Lenz ◽  
...  

1034 Background: The Ras-MAPK pathway is a known driver of tumorigenesis and therapeutic target in a variety of cancers. Alterations in this pathway have been linked to decreased tumor immunogenicity. However, molecular alterations in the Ras-MAPK are rare in breast cancer (BC) and their clinical implications remain unclear. As mutational status does not accurately correlate with transcriptional activity, a MAPK pathway activity score (MPAS, Wagle et al., 2018, npj Precision Medicine) is indicative of MAPK activation and correlates with response to MEK (MEKi) or BRAF inhibition (BRAFi). Our goal was to determine the frequency of molecular alterations in the Ras-MAPK and correlate to MAPK pathway activation in MBC. Methods: A total of 6464 BC samples underwent comprehensive molecular profiling at Caris Life Sciences. Analyses included next generation sequencing of DNA (592 Gene Panel, NextSeq; whole exome sequencing, NovaSEQ), RNA (NovaSeq, whole transcriptome sequencing, WTS) and IHC. MPAS and immune cell fraction (ICF, Quantiseq) were assessed by mRNA analysis. Wilcoxon, Fisher’s exact, or Dunnett’s test was used. All results shown were statistically significant (p < 0.05). Results: The predominant alteration of RAS genes was mutation followed by amplification, no fusions were detected (Table). Only 0.17% of all tumors harbor KRAS G12c mutations. The highest MPAS scores were found in KRAS mutants (mut), HRAS mut (Q61, G1213), BRAF V600 (class 1) mut and NRAS Q61 mut (Table) and therefore used to define Genomic MAPK Activated Tumors (GMAT). GMAT compared to wild type (WT) had significantly higher PD-L1 expression, TMB and MSI/dMMR. GMAT had less B cells (3.4% vs 4.4%), more M1 Macrophages (4.4% vs 3.4%) and neutrophils (5.5% vs 2.7%) regardless of HR status but less NK cells (2.3% s 3.0%), MSDCs (0.9% vs 3.0%) only in HR- tumors with respect to WT. GMAT tumors showed more frequent mutation rate (mr) of PIK3CA (HR+: 57.3% vs 40%; HR-: 41.9% vs 17.9%). HR+ tumors had a higher mr of MSH3 (11.8% vs 0.6%) while HR- tumors had higher mr of PIK3R1 (9.6% vs 3.8%), RhoA (5.3% vs 0.5%), DNA repair genes (TERT, 18.2% vs 1.0%; ARID1A, 18.2% vs 5.9%; PRKDC, 3.9% vs 0) and lower TP53 mr (54.5% vs 85.8%) compared to WT. Conclusions: Our study demonstrates that RAS, BRAF and MEK1 mutations are associated with MAPK pathway activation indicative of benefit from MEKi or BRAFi. GMAT warrant further investigation for combinations targeting the RAS-MAPK pathway and immune checkpoint inhibitors.[Table: see text]


Sign in / Sign up

Export Citation Format

Share Document