Low-Temperature Fracturing and Freeze-Fracture Replication

Author(s):  
Patrick Echlin
Author(s):  
William P. Wergin ◽  
Eric F. Erbe ◽  
Robert W. Yaklich

Most biological samples contain 70-95% water, consequently cryofixation and freeze-fracturing result in relatively smooth surfaces that exhibit few structural details. Freeze-etching, a technique that solved this problem, was initially developed for TEM observations of virus particles by Steere nearly 40 years ago. The technique, which sublimes water-ice from the surface of a fractured sample, produces surface topography that corresponds to the structural components on the freeze-etched face. This technique was further enhanced by recovering the complementary halves of a fractured sample, etching one of the surfaces and then comparing the complementary replicas from the freeze-fractured and freeze-etched faces. Recently, similar techniques were used on frozen, hydrated samples to examine complementary halves of freeze-fractured, freeze-etched specimens by low temperature SEM. Imaging complementary images of frozen, hydrated specimens in the SEM was faster than imaging complementary replicas in the TEM, however the procedure required specialized holders and was technically demanding.To simplify comparisons of freeze-fracture, freeze-etch images, samples were frozen, fractured and etched in the prechamber of an Oxford CT 1500 HF Cryotrans system that was attached to a Hitachi S-4100 FESEM.


1977 ◽  
Vol 75 (2) ◽  
pp. 436-445 ◽  
Author(s):  
Y Kitajima ◽  
G A Thompson

The origin and differentiation of Tetrahymena pyriformis food vacuolar membranes has been studied by freeze-fracture electron microscopy. By measuring the temperature needed to induce the onset of lipid phase separation (as inferred by the appearance of particle-free regions in replicas) and calculating the changes in average intramembrane particle distribution, a distinct modification of the vacuolar membrane could be observed from the time of its formation from disk-shaped vesicles to its maturation before egestion of its indigestible contents. Whereas the nascent vacuolar membrane first showed signs of phase separation at 9 degrees C, this temperature rose to 14 degrees C in the completed vacuole and then, after lysosomal fusion, eventually declined to 12 degrees C. The average membrane particle density on the PF face increased from 761 +/- 219 to 1,625 +/- 350 per micron 2 during membrane differentiation. Like other membranes of the cell, the vacuolar membrane underwent adaptive changes in its physical properties in cells maintained for several hours at low temperature. This exposure to low temperature caused an equal effect in vacuoles formed before, during, or after the temperature shift-down. Normal changes in the properties of the vacuolar membrane may have some bearing on its programmed sequence of fusion reactions.


Author(s):  
Gregory Hook ◽  
Jacob Bastacky ◽  
Thomas Hayes ◽  
Robert Conhaim ◽  
Norman Staub

Conventional lung preparatory methods for electron microscopy utilizing chemical fixation, dehydration, embedding and/or drying have been critical for understanding alveolar structure. However, these procedures cause the removal of all fluids, alteration of dimensions, and distortion of sp. tial relationships and therefore limit the information that can be obtained. Freeze fracture replica techniques, on the other hand, have provided information on frozen hydrated alveolar structures, but replica procedures require removal of all tissue and cannot preserve the convoluted topography of entire inflated alveoli. Described here is an alternative lung preservation method for use in freeze-fracture, low temperature scanning electron microscopy (SEM) which preserves alveoli in the frozen-hydrated state and permits direct observation of entire inflated alveoli.


Author(s):  
P.L. Moore

Previous freeze fracture results on the intact giant, amoeba Chaos carolinensis indicated the presence of a fibrillar arrangement of filaments within the cytoplasm. A complete interpretation of the three dimensional ultrastructure of these structures, and their possible role in amoeboid movement was not possible, since comparable results could not be obtained with conventional fixation of intact amoebae. Progress in interpreting the freeze fracture images of amoebae required a more thorough understanding of the different types of filaments present in amoebae, and of the ways in which they could be organized while remaining functional.The recent development of a calcium sensitive, demembranated, amoeboid model of Chaos carolinensis has made it possible to achieve a better understanding of such functional arrangements of amoeboid filaments. In these models the motility of demembranated cytoplasm can be controlled in vitro, and the chemical conditions necessary for contractility, and cytoplasmic streaming can be investigated. It is clear from these studies that “fibrils” exist in amoeboid models, and that they are capable of contracting along their length under conditions similar to those which cause contraction in vertebrate muscles.


Author(s):  
A. Tonosaki ◽  
M. Yamasaki ◽  
H. Washioka ◽  
J. Mizoguchi

A vertebrate disk membrane is composed of 40 % lipids and 60 % proteins. Its fracture faces have been classed into the plasmic (PF) and exoplasmic faces (EF), complementary with each other, like those of most other types of cell membranes. The hypothesis assuming the PF particles as representing membrane-associated proteins has been challenged by serious questions if they in fact emerge from the crystalline formation or decoration effects during freezing and shadowing processes. This problem seems to be yet unanswered, despite the remarkable case of the purple membrane of Halobacterium, partly because most observations have been made on the replicas from a single face of specimen, and partly because, in the case of photoreceptor membranes, the conformation of a rhodopsin and its relatives remains yet uncertain. The former defect seems to be partially fulfilled with complementary replica methods.


Author(s):  
H. Gross ◽  
H. Moor

Fracturing under ultrahigh vacuum (UHV, p ≤ 10-9 Torr) produces membrane fracture faces devoid of contamination. Such clean surfaces are a prerequisite foe studies of interactions between condensing molecules is possible and surface forces are unequally distributed, the condensate will accumulate at places with high binding forces; crystallites will arise which may be useful a probes for surface sites with specific physico-chemical properties. Specific “decoration” with crystallites can be achieved nby exposing membrane fracture faces to water vopour. A device was developed which enables the production of pure water vapour and the controlled variation of its partial pressure in an UHV freeze-fracture apparatus (Fig.1a). Under vaccum (≤ 10-3 Torr), small container filled with copper-sulfate-pentahydrate is heated with a heating coil, with the temperature controlled by means of a thermocouple. The water of hydration thereby released enters a storage vessel.


Author(s):  
Russell L. Steere ◽  
Eric F. Erbe

It has been assumed by many involved in freeze-etch or freeze-fracture studies that it would be useless to etch specimens which were cryoprotected by more than 15% glycerol. We presumed that the amount of cryoprotective material exposed at the surface would serve as a contaminating layer and prevent the visualization of fine details. Recent unexpected freeze-etch results indicated that it would be useful to compare complementary replicas in which one-half of the frozen-fractured specimen would be shadowed and replicated immediately after fracturing whereas the complement would be etched at -98°C for 1 to 10 minutes before being shadowed and replicated.Standard complementary replica holders (Steere, 1973) with hinges removed were used for this study. Specimens consisting of unfixed virus-infected plant tissue infiltrated with 0.05 M phosphate buffer or distilled water were used without cryoprotectant. Some were permitted to settle through gradients to the desired concentrations of different cryoprotectants.


Sign in / Sign up

Export Citation Format

Share Document