A Flat Embedding Method to Orient Thin Biological Samples for Sectioning

Author(s):  
Utku Avci ◽  
Jin Nakashima
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Michaela Wenzel ◽  
Marien P. Dekker ◽  
Biwen Wang ◽  
Maroeska J. Burggraaf ◽  
Wilbert Bitter ◽  
...  

AbstractTransmission electron microscopy of cell sample sections is a popular technique in microbiology. Currently, ultrathin sectioning is done on resin-embedded cell pellets, which consumes milli- to deciliters of culture and results in sections of randomly orientated cells. This is problematic for rod-shaped bacteria and often precludes large-scale quantification of morphological phenotypes due to the lack of sufficient numbers of longitudinally cut cells. Here we report a flat embedding method that enables observation of thousands of longitudinally cut cells per single section and only requires microliter culture volumes. We successfully applied this technique to Bacillus subtilis, Escherichia coli, Mycobacterium bovis, and Acholeplasma laidlawii. To assess the potential of the technique to quantify morphological phenotypes, we monitored antibiotic-induced changes in B. subtilis cells. Surprisingly, we found that the ribosome inhibitor tetracycline causes membrane deformations. Further investigations showed that tetracycline disturbs membrane organization and localization of the peripheral membrane proteins MinD, MinC, and MreB. These observations are not the result of ribosome inhibition but constitute a secondary antibacterial activity of tetracycline that so far has defied discovery.


2019 ◽  
Author(s):  
Michaela Wenzel ◽  
Marien P. Dekker ◽  
Biwen Wang ◽  
Maroeska J. Burggraaf ◽  
Wilbert Bitter ◽  
...  

AbstractTransmission electron microscopy (TEM) is an important imaging technique in bacterial research and requires ultrathin sectioning of resin embedding of cell pellets. This method consumes milli- to deciliters of culture and results in sections of randomly orientated cells. For rod-shaped bacteria, this makes it exceedingly difficult to find longitudinally cut cells, which precludes large-scale quantification of morphological phenotypes. Here, we describe a new fixation method using either thin agarose layers or carbon-coated glass surfaces that enables flat embedding of bacteria. This technique allows for the observation of thousands of longitudinally cut rod-shaped cells per single section and requires only microliter culture volumes. We successfully applied this technique to Gram-positive Bacillus subtilis, Gram-negative Escherichia coli, the tuberculosis vaccine strain Mycobacterium bovis BCG, and the cell wall-lacking mycoplasma Acholeplasma laidlawii. To assess the potential of the technique to quantify morphological phenotypes, we examined cellular changes induced by a panel of different antibiotics. Surprisingly, we found that the ribosome inhibitor tetracycline causes significant deformations of the cell membrane. Further investigations showed that the presence of tetracycline in the cell membrane changes membrane organization and affects the peripheral membrane proteins MinD, MinC, and MreB, which are important for regulation of cell division and elongation. Importantly, we could show that this effect is not the result of ribosome inhibition but is a secondary antibacterial activity of tetracycline that has defied discovery for more than 50 years.SignificanceBacterial antibiotic resistance is a serious public health problem and novel antibiotics are urgently needed. Before a new antibiotic can be brought to the clinic, its antibacterial mechanism needs to be elucidated. Transmission electron microscopy is an important tool to investigate these mechanisms. We developed a flat embedding method that enables examination of many more bacterial cells than classical protocols, enabling large-scale quantification of phenotypic changes. Flat embedding can be adapted to most growth conditions and microbial species and can be employed in a wide variety of microbiological research fields. Using this technique, we show that even well-established antibiotics like tetracycline can have unknown additional antibacterial activities, demonstrating how flat embedding can contribute to finding new antibiotic mechanisms.


2018 ◽  
Vol 24 (5) ◽  
pp. 526-544 ◽  
Author(s):  
Manja Luckner ◽  
Gerhard Wanner

AbstractCorrelative light and electron microscopy (CLEM) has been in use for several years, however it has remained a costly method with difficult sample preparation. Here, we report a series of technical improvements developed for precise and cost-effective correlative light and scanning electron microscopy (SEM) and focused ion beam (FIB)/SEM microscopy of single cells, as well as large tissue sections. Customized coordinate systems for both slides and coverslips were established for thin and ultra-thin embedding of a wide range of biological specimens. Immobilization of biological samples was examined with a variety of adhesives. For histological sections, a filter system for flat embedding was developed. We validated ultra-thin embedding on laser marked slides for efficient, high-resolution CLEM. Target cells can be re-located within minutes in SEM without protracted searching and correlative investigations were reduced to a minimum of preparation steps, while still reaching highest resolution. The FIB/SEM milling procedure is facilitated and significantly accelerated as: (i) milling a ramp becomes needless, (ii) significant re-deposition of milled material does not occur; and (iii) charging effects are markedly reduced. By optimizing all technical parameters FIB/SEM stacks with 2 nm iso-voxels were achieved over thousands of sections, in a wide range of biological samples.


Author(s):  
W. R. Schucany ◽  
G. H. Kelsoe ◽  
V. F. Allison

Accurate estimation of the size of spheroid organelles from thin sectioned material is often necessary, as uniquely homogenous populations of organelles such as vessicles, granules, or nuclei often are critically important in the morphological identification of similar cell types. However, the difficulty in obtaining accurate diameter measurements of thin sectioned organelles is well known. This difficulty is due to the extreme tenuity of the sectioned material as compared to the size of the intact organelle. In populations where low variance is suspected the traditional method of diameter estimation has been to measure literally hundreds of profiles and to describe the “largest” as representative of the “approximate maximal diameter”.


Author(s):  
C. F. Oster

Although ultra-thin sectioning techniques are widely used in the biological sciences, their applications are somewhat less popular but very useful in industrial applications. This presentation will review several specific applications where ultra-thin sectioning techniques have proven invaluable.The preparation of samples for sectioning usually involves embedding in an epoxy resin. Araldite 6005 Resin and Hardener are mixed so that the hardness of the embedding medium matches that of the sample to reduce any distortion of the sample during the sectioning process. No dehydration series are needed to prepare our usual samples for embedding, but some types require hardening and staining steps. The embedded samples are sectioned with either a prototype of a Porter-Blum Microtome or an LKB Ultrotome III. Both instruments are equipped with diamond knives.In the study of photographic film, the distribution of the developed silver particles through the layer is important to the image tone and/or scattering power. Also, the morphology of the developed silver is an important factor, and cross sections will show this structure.


Author(s):  
Patrick Echlin

A number of papers have appeared recently which purport to have carried out x-ray microanalysis on fully frozen hydrated samples. It is important to establish reliable criteria to be certain that a sample is in a fully hydrated state. The morphological appearance of the sample is an obvious parameter because fully hydrated samples lack the detailed structure seen in their freeze dried counterparts. The electron scattering by ice within a frozen-hydrated section and from the surface of a frozen-hydrated fracture face obscures cellular detail. (Fig. 1G and 1H.) However, the morphological appearance alone can be quite deceptive for as Figures 1E and 1F show, parts of frozen-dried samples may also have the poor morphology normally associated with fully hydrated samples. It is only when one examines the x-ray spectra that an assurance can be given that the sample is fully hydrated.


Author(s):  
S.R. Glanvill

This paper summarizes the application of ultramicrotomy as a specimen preparation technique for some of the Materials Science applications encountered over the past two years. Specimens 20 nm thick by hundreds of μm lateral dimension are readily prepared for electron beam analysis. Materials examined include metals, plastics, ceramics, superconductors, glassy carbons and semiconductors. We have obtain chemical and structural information from these materials using HRTEM, CBED, EDX and EELS analysis. This technique has enabled cross-sectional analysis of surfaces and interfaces of engineering materials and solid state electronic devices, as well as interdiffusion studies across adjacent layers.Samples are embedded in flat embedding moulds with Epon 812 epoxy resin / Methyl Nadic Anhydride mixture, using DY064 accelerator to promote the reaction. The embedded material is vacuum processed to remove trapped air bubbles, thereby improving the strength and sectioning qualities of the cured block. The resin mixture is cured at 60 °C for a period of 80 hr and left to equilibrate at room temperature.


Author(s):  
Dai Dalin ◽  
Guo Jianmin

Lipid cytochemistry has not yet advanced far at the EM level. A major problem has been the loss of lipid during dehydration and embedding. Although the adoption of glutaraldehyde and osmium tetroxide accelerate the chemical reaction of lipid and osmium tetroxide can react on the double bouds of unsaturated lipid to from the osmium black, osmium tetroxide can be reduced in saturated lipid and subsequently some of unsaturated lipid are lost during dehydration. In order to reduce the loss of lipid by traditional method, some researchers adopted a few new methods, such as the change of embedding procedure and the adoption of new embedding media, to solve the problem. In a sense, these new methods are effective. They, however, usually require a long period of preparation. In this paper, we do research on the fiora nectary strucure of lauraceae by the rapid-embedding method wwith PEG under electron microscope and attempt to find a better method to solve the problem mentioned above.


Sign in / Sign up

Export Citation Format

Share Document