scholarly journals Erratum to: Characterization and Functional Phenotyping of Renal Immune Cells via Flow Cytometry

Author(s):  
Nathan P. Rudemiller ◽  
Steven D. Crowley
Keyword(s):  
2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 414.2-415
Author(s):  
X. Huang ◽  
T. W. Li ◽  
J. Chen ◽  
Z. Huang ◽  
S. Chen ◽  
...  

Background:Ankylosing spondylitis (AS) is a type of common, chronic inflammatory disease that compromises the axial skeleton and sacroiliac joints, causing inflammatory low back pain and progressive spinal stiffness, over time some patients develop spinal immobility and ankylosis which can lead to a decrease in quality of life. The last few decades, evidence has clearly indicated that neutrophil also plays key roles in the progression of AS. However, the immunomodulatory roles and mechanisms of neutrophils in AS are poorly understood. T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) has been reported as an important regulatory molecule, expressed and regulated on different innate immune cells, plays a pivotal role in several autoimmunity diseases. Recent study indicates that Tim3 is also expressed on neutrophils. However, the frequency and roles of Tim3-expressing neutrophils in AS was not clear.Objectives:In this study, we investigated the expression of Tim3 on neutrophils in AS patients and explored the correlation between the level of Tim3-expressing neutrophils and the disease activity and severity of AS.Methods:Patients with AS were recruited from Guangdong Second Provincial General Hospital (n=62). Age/sex-matched volunteers as Healthy controls (HC) (n=39). The medical history, clinical manifestations, physical examination, laboratory measurements were recorded. The expression of costimulatory molecules including programmed death 1 (PD-1), Tim-3 on neutrophils were determined by flow cytometry. The mRNA expression of PD-1 and Tim-3 was determined by real-time PCR. The levels of Tim3-expressing neutrophils in AS patients were further analyzed for their correlation with the markers of inflammation such as ESR,CRP,WBC and neutrophil count(NE), as well as disease activity and severity of AS. The expression of Tim3 on neutrophils was monitored during the course of treatment (4 weeks).Results:The expression of Tim3 on neutrophils in patients with AS was increased compared to the HC (Figure 1A). However, significant difference was observed in the frequency of PD-1-expressing neutrophils between AS patients and HC (Figure 1B). The expression analysis of Tim-3 mRNA, but not PD-1, confirmed the results obtained from flow cytometry (Figure 1C). The level of Tim3-expressing neutrophils in patients with AS showed an positive correlation with ESR, CRP and ASAS-endorsed disease activity score (ASDAS) (Figure 1D). Moreover, the frequency of Tim3-expressing neutrophils in active patients(ASDAS≥1.3) was increased as compare with the inactive patients (ASDAS<1.3) (Figure 1E). As shown in Figure 1F, the frequency of Tim3-expressing neutrophils decreased after the treatment.Conclusion:Increased Tim-3 expression on neutrophils may be a novel indicator to assess disease activity and severity in AS, which may serves as a negative feedback mechanism preventing potential tissue damage caused by excessive inflammatory responses in AS patients.References:[1]Han, G., Chen, G., Shen, B. & Li, Y., Tim-3: an activation marker and activation limiter of innate immune cells. FRONT IMMUNOL 4 449 (2013).[2]Vega-Carrascal, I. et al., Galectin-9 signaling through TIM-3 is involved in neutrophil-mediated Gram-negative bacterial killing: an effect abrogated within the cystic fibrosis lung. J IMMUNOL 192 2418 (2014).Figure 1.(A,B)The expression of Tim3 and PD-1 on neutrophils in AS and HC were determined by flow cytometry.(C) The expression of Tim3 and PD-1 on neutrophils in AS and HC were determined by RT-PCR.(D)The correction between Tim3-expressing neutrophils and ESR,CRP,ASDAS.(E) The expression of Tim3 on neutrophils in active and inactive patients.(F) Influence of treatment on the frequency of Tim3-expressing neutrophils.Disclosure of Interests:None declared


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alicja Karabasz ◽  
Monika Bzowska ◽  
Joanna Bereta ◽  
Maria Czarnek ◽  
Maja Sochalska ◽  
...  

AbstractThe binding of mouse IgG3 to Fcγ receptors (FcγR) and the existence of a mouse IgG3-specific receptor have been discussed for 40 years. Recently, integrin beta-1 (ITGB1) was proposed to be a part of an IgG3 receptor involved in the phagocytosis of IgG3-coated pathogens. We investigated the interaction of mouse IgG3 with macrophage-like J774A.1 and P388D1 cells. The existence of an IgG3-specific receptor was verified using flow cytometry and a rosetting assay, in which erythrocytes clustered around the macrophage-like cells coated with an erythrocyte-specific IgG3. Our findings confirmed that receptors binding antigen-free IgG3 are present on J774A.1 and P388D1 cells. We demonstrated for the first time that the removal of N-glycans from IgG3 completely abolished its binding to the cells. Moreover, we discovered that the cells treated with Accutase did not bind IgG3, indicating that IgG3-specific receptors are substrates of this enzyme. The results of antibody-mediated blocking of putative IgG3 receptors suggested that apart from previously proposed ITGB1, FcγRII, FcγRIII, also additional, still unknown, receptor is involved in IgG3 binding. These findings indicate that there is a complex network of glycan-dependent interactions between mouse IgG3 and the surface of effector immune cells.


2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Dan Chen ◽  
Xiaoting Li ◽  
Hui Li ◽  
Kai Wang ◽  
Xianghua Tian

Background. As the most common hepatic malignancy, hepatocellular carcinoma (HCC) has a high incidence; therefore, in this paper, the immune-related genes were sought as biomarkers in liver cancer. Methods. In this study, a differential expression analysis of lncRNA and mRNA in The Cancer Genome Atlas (TCGA) dataset between the HCC group and the normal control group was performed. Enrichment analysis was used to screen immune-related differentially expressed genes. Cox regression analysis and survival analysis were used to determine prognostic genes of HCC, whose expression was detected by molecular experiments. Finally, important immune cells were identified by immune cell infiltration and detected by flow cytometry. Results. Compared with the normal group, 1613 differentially expressed mRNAs (DEmRs) and 1237 differentially expressed lncRNAs (DElncRs) were found in HCC. Among them, 143 immune-related DEmRs and 39 immune-related DElncRs were screened out. These genes were mainly related to MAPK cascade, PI3K-AKT signaling pathway, and TGF-beta. Through Cox regression analysis and survival analysis, MMP9, SPP1, HAGLR, LINC02202, and RP11-598F7.3 were finally determined as the potential diagnostic biomarkers for HCC. The gene expression was verified by RT-qPCR and western blot. In addition, CD4 + memory resting T cells and CD8 + T cells were identified as protective factors for overall survival of HCC, and they were found highly expressed in HCC through flow cytometry. Conclusion. The study explored the dysregulation mechanism and potential biomarkers of immune-related genes and further identified the influence of immune cells on the prognosis of HCC, providing a theoretical basis for the prognosis prediction and immunotherapy in HCC patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Annieck M. Diks ◽  
Indu Khatri ◽  
Liesbeth E.M. Oosten ◽  
Bas de Mooij ◽  
Rick J. Groenland ◽  
...  

Antigen-specific serum immunoglobulin (Ag-specific Ig) levels are broadly used as correlates of protection. However, in several disease and vaccination models these fail to predict immunity. In these models, in-depth knowledge of cellular processes associated with protective versus poor responses may bring added value. We applied high-throughput multicolor flow cytometry to track over-time changes in circulating immune cells in 10 individuals following pertussis booster vaccination (Tdap, Boostrix®, GlaxoSmithKline). Next, we applied correlation network analysis to extensively investigate how changes in individual cell populations correlate with each other and with Ag-specific Ig levels. We further determined the most informative cell subsets and analysis time points for future studies. Expansion and maturation of total IgG1 plasma cells, which peaked at day 7 post-vaccination, was the most prominent cellular change. Although these cells preceded the increase in Ag-specific serum Ig levels, they did not correlate with the increase of Ig levels. In contrast, strong correlation was observed between Ag-specific IgGs and maximum expansion of total IgG1 and IgA1 memory B cells at days 7 to 28. Changes in circulating T cells were limited, implying the need for a more sensitive approach. Early changes in innate immune cells, i.e. expansion of neutrophils, and expansion and maturation of monocytes up to day 5, most likely reflected their responses to local damage and adjuvant. Here we show that simultaneous monitoring of multiple circulating immune subsets in blood by flow cytometry is feasible. B cells seem to be the best candidates for vaccine monitoring.


2018 ◽  
Vol 103 (5) ◽  
pp. 955-963 ◽  
Author(s):  
Ákos M. Lőrincz ◽  
Viktória Szeifert ◽  
Balázs Bartos ◽  
Erzsébet Ligeti

2020 ◽  
Vol 8 (2) ◽  
pp. e001250
Author(s):  
Benson Chellakkan Selvanesan ◽  
Kiran Meena ◽  
Amanda Beck ◽  
Lydie Meheus ◽  
Olaya Lara ◽  
...  

BackgroundTreatments for pancreatic ductal adenocarcinoma are poorly effective, at least partly due to the tumor’s immune-suppressive stromal compartment. New evidence of positive effects on immune responses in the tumor microenvironment (TME), compelled us to test the combination of gemcitabine (GEM), a standard chemotherapeutic for pancreatic cancer, with nicotinamide (NAM), the amide form of niacin (vitamin B3), in mice with pancreatic cancer.MethodsVarious mouse tumor models of pancreatic cancer, that is, orthotopic Panc-02 and KPC (KrasG12D, p53R172H, Pdx1-Cre) grafts, were treated alternately with NAM and GEM for 2 weeks, and the effects on efficacy, survival, stromal architecture and tumor-infiltrating immune cells was examined by immunohistochemistry (IHC), flow cytometry, Enzyme-linked immunospot (ELISPOT), T cell depletions in vivo, Nanostring analysis and RNAscope.ResultsA significant reduction in tumor weight and number of metastases was found, as well as a significant improved survival of the NAM+GEM group compared with all control groups. IHC and flow cytometry showed a significant decrease in tumor-associated macrophages and myeloid-derived suppressor cells in the tumors of NAM+GEM-treated mice. This correlated with a significant increase in the number of CD4 and CD8 T cells of NAM+GEM-treated tumors, and CD4 and CD8 T cell responses to tumor-associated antigen survivin, most likely through epitope spreading. In vivo depletions of T cells demonstrated the involvement of CD4 T cells in the eradication of the tumor by NAM+GEM treatment. In addition, remodeling of the tumor stroma was observed with decreased collagen I and lower expression of hyaluronic acid binding protein, reorganization of the immune cells into lymph node like structures and CD31 positive vessels. Expression profiling for a panel of immuno-oncology genes revealed significant changes in genes involved in migration and activation of T cells, attraction of dendritic cells and epitope spreading.ConclusionThis study highlights the potential of NAM+GEM as immunotherapy for advanced pancreatic cancer.


2020 ◽  
Vol 11 ◽  
Author(s):  
Youngjin Park ◽  
Isabel S. Abihssira-García ◽  
Sebastian Thalmann ◽  
Geert F. Wiegertjes ◽  
Daniel R. Barreda ◽  
...  

2017 ◽  
Vol 1 (S1) ◽  
pp. 3-3
Author(s):  
Timothy P. Moran ◽  
Robert M. Immormino ◽  
Hideki Nakano ◽  
David Peden ◽  
Donald N. Cook

OBJECTIVES/SPECIFIC AIMS: Allergic asthma is a chronic lung disease driven by inappropriate inflammatory responses against inhaled allergens. Neuropilin-2 (NRP2) is a pleiotropic transmembrane receptor expressed in the lung, but its role in allergic airway inflammation is unknown. Here, we characterized NRP2 expression in lung immune cells and investigated the effects of NRP2 deficiency on airway inflammation. METHODS/STUDY POPULATION: NRP2 expression by lung immune cells from NRP2 reporter mice was determined by flow cytometry. NRP2 expression by human alveolar macrophages (AM) from healthy individuals was determined by mRNA analysis and flow cytometry. Airway inflammation in NRP2-deficient mice was assessed by bronchoalveolar lavage (BAL) cytology and inflammatory gene expression in lung tissue. RESULTS/ANTICIPATED RESULTS: NRP2 expression in lung immune cells was negligible under steady-state conditions. In contrast, inhalational exposure to lipopolysaccharide (LPS) adjuvant dramatically induced NRP2 expression in AM, as 63.3% of AM from LPS-treated mice were NRP2+ compared with 1.5% of AM from control mice. Ex vivo treatment of human AM with LPS resulted in a 1.5-fold and 2.6-fold increase in NRP2 mRNA and surface protein expression, respectively. Compared to littermate controls, NRP2-deficient mice had greater numbers of BAL leukocytes and increased lung expression of the T helper type 2 cytokines IL-4 and IL-5. Furthermore, NRP2 deficiency resulted in stochastic development of allergic airway inflammation, as spontaneous airway eosinophilia was detected in 25% (2/8) of NRP2-deficient mice compared with 0% (0/8) of littermate controls. DISCUSSION/SIGNIFICANCE OF IMPACT: NRP2 is expressed by activated human and murine AM and suppresses the spontaneous development of allergic airway inflammation. These findings suggest that NRP2 may play a key role in allergic asthma pathogenesis, and could prove to be an important therapeutic target in patients with asthma and other allergic diseases.


Author(s):  
Michael Fricker ◽  
Melanie Erriah ◽  
Collin Brooks ◽  
Jodie Simpson ◽  
Peter Gibson
Keyword(s):  

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e22129-e22129
Author(s):  
Simona Partlova ◽  
Anna Fialova ◽  
Ludek Sojka ◽  
Lukas Rob ◽  
Jirina Bartunkova ◽  
...  

e22129 Background: Ovarian cancer is diagnosed in more than 190,000 new patients every year and is known to have the highest mortality rate among gynaecologic cancers. The type of immune cells that are present within the tumor microenvironment can play a crucial role in the survival of patients. However, little is known about the dynamics of the tumor-infiltrating immune cells during disease progression. Methods: We studied the immune cells infiltrating the tumor tissue of ovarian cancer patients at different stages of disease. We analysed the patterns of T lymphocytes in fresh tumor tissue as well as blood samples of 44 newly diagnosed ovarian cancer patients by flow cytometry. To evaluate whether regulatory T cells (Tregs) develop in situ or migrate to tumor tissue, we measured a concentration of chemokine CCL22 in tumor cell culture supernatants. We also determined the expression of CCR4 on circulating as well as tumor-infiltrating Tregs by flow cytometry. Results: The early stages of development of ovarian carcinomas were characterized by a strong Th17 immune response, whereas in stage II patients, recruitment of high numbers of Th1 cells was observed. In disseminated tumors (stage III-IV), we detected a dominant population of Helios+ activated regulatory T cells along with high numbers of macrophages and immature myeloid dendritic cells. Tumor-infiltrating Tregs had markedly lower expression of CCR4 than circulating Tregs, and the numbers of tumor-infiltrating Tregs significantly correlated with the levels of CCL22 in ovarian tumor cell culture supernatants, suggesting their recruitment via a CCR4/CCL22 interaction. CCL22 was mainly produced by tumor cells, macrophages and mDCs in the primary ovarian tumors, and its expression markedly increased in response to IFNgamma. Conclusions: Taken together, the specific recruitment of Tregs, probably triggered by inflammatory stimuli, leads to a significant immune suppression in the advanced stages of ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document