The LPS/D-Galactosamine-Induced Fulminant Hepatitis Model to Assess the Role of Ligand-Activated Nuclear Receptors on the NLRP3 Inflammasome Pathway In Vivo

Author(s):  
Yasmine Sebti ◽  
Lise Ferri ◽  
Mathilde Zecchin ◽  
Justine Beauchamp ◽  
Denis Mogilenko ◽  
...  
Blood ◽  
2020 ◽  
Vol 136 (4) ◽  
pp. 501-515 ◽  
Author(s):  
Kunpeng Wu ◽  
Yan Yuan ◽  
Huihui Yu ◽  
Xin Dai ◽  
Shu Wang ◽  
...  

Abstract The diversity of the human microbiome heralds the difference of the impact that gut microbial metabolites exert on allogenic graft-versus-host (GVH) disease (GVHD), even though short-chain fatty acids and indole were demonstrated to reduce its severity. In this study, we dissected the role of choline-metabolized trimethylamine N-oxide (TMAO) in the GVHD process. Either TMAO or a high-choline diet enhanced the allogenic GVH reaction, whereas the analog of choline, 3,3-dimethyl-1-butanol reversed TMAO-induced GVHD severity. Interestingly, TMAO-induced alloreactive T-cell proliferation and differentiation into T-helper (Th) subtypes was seen in GVHD mice but not in in vitro cultures. We thus investigated the role of macrophage polarization, which was absent from the in vitro culture system. F4/80+CD11b+CD16/32+ M1 macrophage and signature genes, IL-1β, IL-6, TNF-α, CXCL9, and CXCL10, were increased in TMAO-induced GVHD tissues and in TMAO-cultured bone marrow–derived macrophages (BMDMs). Inhibition of the NLRP3 inflammasome reversed TMAO-stimulated M1 features, indicating that NLRP3 is the key proteolytic activator involved in the macrophage’s response to TMAO stimulation. Consistently, mitochondrial reactive oxygen species and enhanced NF-κB nuclear relocalization were investigated in TMAO-stimulated BMDMs. In vivo depletion of NLRP3 in GVHD recipients not only blocked M1 polarization but also reversed GVHD severity in the presence of TMAO treatment. In conclusion, our data revealed that TMAO-induced GVHD progression resulted from Th1 and Th17 differentiation, which is mediated by the polarized M1 macrophage requiring NLRP3 inflammasome activation. It provides the link among the host choline diet, microbial metabolites, and GVH reaction, shedding light on alleviating GVHD by controlling choline intake.


2020 ◽  
Vol 21 (22) ◽  
pp. 8437
Author(s):  
Jae-Sung Kim ◽  
Seok-Jun Mun ◽  
Euni Cho ◽  
Donggyu Kim ◽  
Wooic Son ◽  
...  

Dense granule proteins (GRAs) are essential components in Toxoplasma gondii, which are suggested to be promising serodiagnostic markers in toxoplasmosis. In this study, we investigated the function of GRA9 in host response and the associated regulatory mechanism, which were unknown. We found that GRA9 interacts with NLR family pyrin domain containing 3 (NLRP3) involved in inflammation by forming the NLRP3 inflammasome. The C-terminal of GRA9 (GRA9C) is essential for GRA9–NLRP3 interaction by disrupting the NLRP3 inflammasome through blocking the binding of apoptotic speck-containing (ASC)-NLRP3. Notably, Q200 of GRA9C is essential for the interaction of NLRP3 and blocking the conjugation of ASC. Recombinant GRA9C (rGRA9C) showed an anti-inflammatory effect and the elimination of bacteria by converting M1 to M2 macrophages. In vivo, rGRA9C increased the anti-inflammatory and bactericidal effects and subsequent anti-septic activity in CLP- and E. coli- or P. aeruginosa-induced sepsis model mice by increasing M2 polarization. Taken together, our findings defined a role of T. gondii GRA9 associated with NLRP3 in host macrophages, suggesting its potential as a new candidate therapeutic agent for sepsis.


2016 ◽  
Vol 195 (4S) ◽  
Author(s):  
Yan Liu ◽  
Feng He ◽  
Ellen Shapiro ◽  
Herbert Lepor ◽  
Xue-Ru Wu
Keyword(s):  

Author(s):  
Daniel Crean ◽  
Evelyn P. Murphy

The NR4A1–NR4A3 (Nur77, Nurr1, and Nor-1) subfamily of nuclear receptors is a group of immediate early genes induced by a pleiotropy of stimuli including peptide hormones, growth factors, cytokines, inflammatory, and physiological stimuli, and cellular stress. NR4A receptors function as potent sensors of changes in the cellular microenvironment to control physiological and pathological processes through genomic and non-genomic actions. NR4A receptors control metabolism and cardiovascular and neurological functions and mediate immune cell homeostasis in inflammation and cancer. This receptor subfamily is increasingly recognized as an important molecular connection between chronic inflammation, altered immune cell responses, and cancer development. In this review, we examine how transcriptome analysis identified NR4A1/NR4A2 receptors as transcriptional regulators in mesenchymal stromal cell (MSC) migration, cell cycle progression, and cytokine production to control local immune responses. In chronic inflammatory conditions, such as rheumatoid arthritis, NR4A receptors have been shown to modify the activity of MSC and fibroblast-like stromal cells to regulate synovial tissue hyperplasia, pathological angiogenesis, and cartilage turnover in vivo. Additionally, as NR4A1 has been observed as a major transcriptional regulator in tumor–stromal communication controlling tumorigenesis, we discuss how advances in the pharmacological control of these receptors lead to important new mechanistic insights into understanding the role of the tumor microenvironment in health and disease.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6238
Author(s):  
Paromita Sarbadhikary ◽  
Blassan P. George ◽  
Heidi Abrahamse

The pyrin domain-containing multiprotein complex NLRP3 inflammasome, consisting of the NLRP3 protein, ASC adaptor, and procaspase-1, plays a vital role in the pathophysiology of several inflammatory disorders, including neurological and metabolic disorders, chronic inflammatory diseases, and cancer. Several phytochemicals act as promising anti-inflammatory agents and are usually regarded to have potential applications as complementary or alternative therapeutic agents against chronic inflammatory disorders. Various in vitro and in vivo studies have reported the anti-inflammatory role of berberine (BRB), an organic heteropentacyclic phytochemical and natural isoquinoline, in inhibiting NLRP3 inflammasome-dependent inflammation against many disorders. This review summarizes the mechanism and regulation of NLRP3 inflammasome activation and its involvement in inflammatory diseases, and discusses the current scientific evidence on the repressive role of BRB on NLRP3 inflammasome pathways along with the possible mechanism(s) and their potential in counteracting various inflammatory diseases.


2014 ◽  
Vol 211 (7) ◽  
pp. 1333-1347 ◽  
Author(s):  
Mary A. Rodgers ◽  
James W. Bowman ◽  
Hiroaki Fujita ◽  
Nicole Orazio ◽  
Mude Shi ◽  
...  

Linear ubiquitination is a newly discovered posttranslational modification that is currently restricted to a small number of known protein substrates. The linear ubiquitination assembly complex (LUBAC), consisting of HOIL-1L, HOIP, and Sharpin, has been reported to activate NF-κB–mediated transcription in response to receptor signaling by ligating linear ubiquitin chains to Nemo and Rip1. Despite recent advances, the detailed roles of LUBAC in immune cells remain elusive. We demonstrate a novel HOIL-1L function as an essential regulator of the activation of the NLRP3/ASC inflammasome in primary bone marrow–derived macrophages (BMDMs) independently of NF-κB activation. Mechanistically, HOIL-1L is required for assembly of the NLRP3/ASC inflammasome and the linear ubiquitination of ASC, which we identify as a novel LUBAC substrate. Consequently, we find that HOIL-1L−/− mice have reduced IL-1β secretion in response to in vivo NLRP3 stimulation and survive lethal challenge with LPS. Together, these data demonstrate that linear ubiquitination is required for NLRP3 inflammasome activation, defining the molecular events of NLRP3 inflammasome activation and expanding the role of LUBAC as an innate immune regulator. Furthermore, our observation is clinically relevant because patients lacking HOIL-1L expression suffer from pyogenic bacterial immunodeficiency, providing a potential new therapeutic target for enhancing inflammation in immunodeficient patients.


2015 ◽  
Vol 37 (1) ◽  
pp. 214-224 ◽  
Author(s):  
Xiaochen Wang ◽  
Shushan Yan ◽  
Donghua Xu ◽  
Jun Li ◽  
Yu Xie ◽  
...  

Background/Aims: Critical roles of PTPRO and TLR4 have been implicated in hepatocellular carcinoma. However, little is known about their modifying effects on inflammation-related diseases in liver, particularly fulminant hepatitis (FH). We aim to investigate the potential role of PTPRO and its interaction with TLR4 in LPS/D-GaIN induced FH. Methods: A LPS/D-GaIN induced mouse FH model was used. RAW264.7 cells were transfected with PTPRO over-expressed lentiviral plasmids for further investigation. Results: The mortality of PTPRO KO mice is higher than WT mice after LPS/D-GaIN administration. Aggravated liver injury was demonstrated by increased level of serous ALT and AST and numerous hepatic cells death in PTPRO KO mice following LPS/D-GaIN administration. Interestingly, inflammation was attenuated in PTPRO-deficient mice following LPS/D-GaIN administration, which was suggested by decreased inflammatory cytokines (TNF-a, IFN-γ, IL-1ß, IL-6, IL-17A and IL-12) and cells infiltrating into spleen (CD3+IFN-γ+ cells, CD3+TNF-a+ cells, F4/80+/TLR4+ cells). A feedback regulation between PTPRO and TLR4 dependent on NF-γB signaling pathway was demonstrated in vivo and in vitro. Conclusion: PTPRO plays an important role in FH by interacting with TLR4. The crosstalk between PTPRO and TLR4 is a novel bridge linking innate immune and adaptive immune in acute liver injury.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yao Qin ◽  
Yanwei Yu ◽  
Chendong Yang ◽  
Zhuien Wang ◽  
Yi Yang ◽  
...  

Inflammatory bowel disease (IBD) is an important high-risk factor that promotes the occurrence and development of colon cancer. Research on the mechanism of regulating NLRP3 can provide potential targets for treating NLRP3 inflammasome–related diseases and changing the inflammatory potential of immune cells. In this study, the effects of atractylenolide I on colitis-associated CRC (caCRC) and inflammasome activation were investigated both in vivo and in vitro. Furthermore, the role of atractylenolide I on Drp1-mediated mitochondrial fission was analyzed via Western blotting and transmission electron microscopy (TEM). Moreover, the Drp1 overexpression lentiviral vector was used to study the role of Drp1 on the signaling mechanisms of atractylenolide I. Atractylenolide I treatment significantly reduced the cell viability of human HCT116 and SW480 cells and induced apoptosis, and effectively inhibited colon tumors in the AOM/DSS mouse model. The reduction of NLRP3 inflammasome activation and excessive fission of mitochondria mediated by Drp1 were associated with the administration of atractylenolide I. Upregulation of Drp1 reversed the inhibitory effect of atractylenolide I on the activation of NLRP3 inflammasomes. Overexpressing the Drp1 expression counteracted the restraint of atractylenolide I on the release of IL-1β of LPS/DSS-stimulated BMDMs. Atractylenolide I inhibited NLRP3 and caspase-1 expression in mice BMDMs, with no influence in the Drp1-overexpressed BMDMs. These results demonstrated that atractylenolide I inhibits NLRP3 inflammasome activation in colitis-associated colorectal cancer via suppressing Drp1-mediated mitochondrial fission.


2021 ◽  
Author(s):  
Jin Wang ◽  
Haiyuan Yang ◽  
Fan Zhang ◽  
Minghao Shao ◽  
Haocheng Xu ◽  
...  

Abstract BackgroundMicroglia pyroptosis-induced neuroinflammation has been one of the potential treatment targets for spinal cord injury (SCI). And melatonin is reported to have anti-neuroinflammation effect on SCI, but the underlying mechanism is largely unexplored. In addition, the potential regulatory role of stimulator of interferon genes (STING) mediated innate immune response in the SCI-induced neuroinflammation also remains unknown. The aim of this study is to identify the potential molecular mechanism of the anti-neuroinflammation effect of melatonin in SCI mice and to explore whether STING-mediated signal pathway is involved in this pharmacological process. MethodsIn vivo, the C57BL/6 female mice underwent SCI injury or Sham surgery (laminectomy alone). Melatonin and selective STING antagonist C-176 were administered intraperitoneally after injury in the SCI group once a day for 3 or 28 consecutive days for different experiments. The BMS score system was adopted to assess the motor function of mice. In vitro, the Lipopolysaccharide (LPS)/ATP was combinedly used to induce cell pyroptosis in BV2 microglia and the adenovirus was used to overexpress STING. A series of molecular experiments including Western blot (WB), quantitative real-time polymerase chain reaction (RT-qPCR), enzyme linked immunosorbent assay (ELISA) and immunofluorescence (IF) were performed in vivo and in vitro. ResultsOur results showed that melatonin effectively suppressed NLRP3 inflammasome-induced pyroptosis and STING-mediated pathway after SCI. In addition, C-176 also alleviated the NLRP3 inflammasome-mediated pyroptosis and promoted functional recovery in vivo. In vitro, we also found that melatonin abrogated NLRP3 inflammasome activation in LPS/ATP-induced BV2 cells, while overexpression of STING reversed the anti-pyroptotic role of melatonin. Subsequent results together indicated that the role of melatonin on STING-dependent NLRP3 inflammasome activation may be mediated by decreasing ROS production and cytosolic mtDNA release. ConclusionThis study preliminarily demonstrated that melatonin exerts its anti-neuroinflammation role on SCI by alleviating the NLRP3 inflammasome-mediated pyroptosis, which was mediated by blocking the ROS/mtDNA/STING pathway. It provides us a better understanding of the pathological mechanism after SCI and offer experiment evidence to promote the use of melatonin for SCI.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20820-20836 ◽  
Author(s):  
Tianshu Wu ◽  
Xue Liang ◽  
Keyu He ◽  
Tingting Wei ◽  
Yan Wang ◽  
...  

Ag2Se QD exposure activated microglia followed by pro-inflammatory cytokine IL-1β release in vivo and in vitro through NLRP3 inflammasome activation.


Sign in / Sign up

Export Citation Format

Share Document