Mathematical Challenges in Measuring Variability Patterns for Precipitation Analysis

2019 ◽  
pp. 55-74 ◽  
Author(s):  
Maria Emelianenko ◽  
Viviana Maggioni
2019 ◽  
Vol 22 (6) ◽  
pp. 5539-5552
Author(s):  
T. P. Singh ◽  
Vidya Kumbhar ◽  
Sandipan Das ◽  
Mangesh M. Deshpande ◽  
Komal Dhoka

1989 ◽  
Vol 109 (1-2) ◽  
pp. 25-42 ◽  
Author(s):  
Nicolas R. Dalezios ◽  
Panagiotis A. Tyraskis

2014 ◽  
Vol 27 (14) ◽  
pp. 5201-5218 ◽  
Author(s):  
Melissa Gervais ◽  
L. Bruno Tremblay ◽  
John R. Gyakum ◽  
Eyad Atallah

Abstract This study focuses on errors in extreme precipitation in gridded station products incurred during the upscaling of station measurements to a grid, referred to as representativeness errors. Gridded precipitation station analyses are valuable observational data sources with a wide variety of applications, including model validation. The representativeness errors associated with two gridding methods are presented, consistent with either a point or areal average interpretation of model output, and it is shown that they differ significantly (up to 30%). An experiment is conducted to determine the errors associated with station density, through repeated gridding of station data within the United States using subsequently fewer stations. Two distinct error responses to reduced station density are found, which are attributed to differences in the spatial homogeneity of precipitation distributions. The error responses characterize the eastern and western United States, which are respectively more and less homogeneous. As the station density decreases, the influence of stations farther from the analysis point increases, and therefore, if the distributions are inhomogeneous in space, the analysis point is influenced by stations with very different precipitation distributions. Finally, ranges of potential percent representativeness errors of the median and extreme precipitation across the United States are created for high-resolution (0.25°) and low-resolution areal averaged (0.9° lat × 1.25° lon) precipitation fields. For example, the range of the representativeness errors is estimated, for annual extreme precipitation, to be from +16% to −12% in the low-resolution data, when station density is 5 stations per 0.9° lat × 1.25° lon grid box.


2017 ◽  
Vol 21 (2) ◽  
pp. 135 ◽  
Author(s):  
Rodrigo Valdés-Pineda ◽  
Juan B. Valdés ◽  
Pablo García-Chevesich

<p class="Resumen">Los eventos extremos de precipitación intensa que se produjeron entre el 24 y 26 de marzo de 2015 en la región del Desierto de Atacama (26-29°S), en el Norte de Chile, dejaron alrededor de 30 000 damnificados, siendo uno de los eventos de mayores magnitudes de los últimos 50 años, y que tuvo un costo de reconstrucción de alrededor de $1.5 billones de dólares. Los flujos de detritos que se incrementaron durante la crecida inundaron gran parte de las ciudades de Copiapó y Tierra Amarilla. Este manuscrito tiene por objetivo modelar la crecida aluvional de marzo de 2015 en la cuenca del Río Copiapó, específicamente en las localidades de Copiapó y Tierra Amarilla. La modelación se lleva a cabo utilizando el modelo Rapid Mass Movement Simulation (RAMMS) que permite modelar la dinámica de la crecida aluvional en dos dimensiones, utilizando las características topográficas de los dominios de modelación. La calibración del modelo fue llevada a cabo satisfactoriamente utilizando datos de alturas capturados en terreno después de la crecida del año 2015. Un análisis detallado del evento hidrometeorológico es llevado a cabo utilizando imágenes satelitales obtenidas desde Multi-satellite Precipitation Analysis (TMPA), así como datos pluviométricos e hidrográficos disponibles en la cuenca del Río Copiapó. La simulación de la crecida es reproducida con mapas de alturas de inundación asociados a dos escenarios de modelación. Las alturas máximas de inundación son finalmente utilizadas para el desarrollo de mapas de riesgos en ambas localidades. De acuerdo a nuestros resultados, el modelo RAMMS es una herramienta apropiada para modelar crecidas aluvionales y elaborar mapas de riesgos de inundación para mejorar la gestión de riesgos hidrológicos en cuencas áridas y semiáridas de Chile.</p>


2008 ◽  
Vol 12 ◽  
pp. 165-170 ◽  
Author(s):  
A. Yatagai ◽  
P. Xie ◽  
P. Alpert

Abstract. We show an algorithm to construct a rain-gauge-based analysis of daily precipitation for the Middle East. One of the key points of our algorithm is to construct an accurate distribution of climatology. One possible advantage of this product is to validate high-resolution climate models and/or to diagnose the impact of climate changes on local hydrological resources. Many users are familiar with a monthly precipitation dataset (New et al., 1999) and a satellite-based daily precipitation dataset (Huffman et al., 2001), yet our data set, unlike theirs, clearly shows the effect of orography on daily precipitation and other extreme events, especially over the Fertile Crescent region. Currently the Middle-East precipitation analysis product is consisting of a 25-year data set for 1979–2003 based on more than 1300 stations.


2020 ◽  
Vol 21 (9) ◽  
pp. 2023-2039
Author(s):  
Dikra Khedhaouiria ◽  
Stéphane Bélair ◽  
Vincent Fortin ◽  
Guy Roy ◽  
Franck Lespinas

AbstractConsistent and continuous fields provided by precipitation analyses are valuable for hydrometeorological applications and land data assimilation modeling, among others. Providing uncertainty estimates is a logical step in the analysis development, and a consistent approach to reach this objective is the production of an ensemble analysis. In the present study, a 6-h High-Resolution Ensemble Precipitation Analysis (HREPA) was developed for the domain covering Canada and the northern part of the contiguous United States. The data assimilation system is the same as the Canadian Precipitation Analysis (CaPA) and is based on optimal interpolation (OI). Precipitation from the Canadian national 2.5-km atmospheric prediction system constitutes the background field of the analysis, while at-site records and radar quantitative precipitation estimates (QPE) compose the observation datasets. By using stochastic perturbations, multiple observations and background field random realizations were generated to subsequently feed the data assimilation system and provide 24 HREPA members plus one control run. Based on one summer and one winter experiment, HREPA capabilities in terms of bias and skill were verified against at-site observations for different climatic regions. The results indicated HREPA’s reliability and skill for almost all types of precipitation events in winter, and for precipitation of medium intensity in summer. For both seasons, HREPA displayed resolution and sharpness. The overall good performance of HREPA and the lack of ensemble precipitation analysis (PA) at such spatiotemporal resolution in the literature motivate further investigations on transitional seasons and more advanced perturbation approaches.


Sign in / Sign up

Export Citation Format

Share Document