Fatigue Life Model for PLCC Solder Joints Under Thermal Cycling Stress

Author(s):  
Rohit Khatri ◽  
Diana Denice ◽  
Manoj Kumar
2020 ◽  
Author(s):  
Hui YANG ◽  
Jihui Wu

Abstract The simulation of nano-silver solder joints in flip-chips is performed by the finite element software ANSYS, and the stress-strain distribution results of the solder joints are displayed. In this simulation, the solder joints use Anand viscoplastic constitutive model, which can reasonably simulate the stress and strain of solder joints under thermal cycling load. At the same time this model has been embedded in ANSYS software, so it is more convenient to use. The final simulation results show that the areas where the maximum stresses and strains occur at the solder joints are mostly distributed in the contact areas between the solder joints and the copper pillars and at the solder joints. During the entire thermal cycling load process, the area where the maximum change in stress and strain occurs is always at the solder joint, and when the temperature changes, the temperature at the solder joint changes significantly. Based on comprehensive analysis, the relevant empirical correction calculation equation is used to calculate and predict the thermal fatigue life of nano-silver solder joints. The analysis results provide a reference for the application of nano-silver solder in the electronic packaging industry.


1998 ◽  
Vol 120 (4) ◽  
pp. 322-327 ◽  
Author(s):  
H. Doi ◽  
K. Kawano ◽  
A. Yasukawa ◽  
T. Sato

The effect of a heat spreader on the life of the solder joints for underfill-encapsulated, flip-chip packages is investigated through stress analyses and thermal cycling tests. An underfill with suitable mechanical properties is found to be able to prolong the fatigue life of the solder joints even in a package with a heat spreader and an alumina substrate. The delamination of the underfill from the chip is revealed as another critical failure mode for which the shape of the underfill fillet has a large effect.


1994 ◽  
Vol 116 (3) ◽  
pp. 163-170 ◽  
Author(s):  
Tsung-Yu Pan

In the automotive and computer industries, a perennial challenge has been to design an adequate and efficient accelerated thermal cycling test which would correspond to field service conditions. Failures, induced in both thermal cycle testing and field service, are characterized by thermal fatigue behavior. Several fatigue models have been proposed, none of these models take into account all of the many parameters of the test or service environment. In thermal cycling, for example, the temperature range, ramp rate, hold time, and stepped heating and cooling are known to influence the number of cycles to failure. In this study, a critical accumulated strain energy (CASE) failure criterion is proposed to correlate the fatigue life to both the plastic and creep strain energies, which accumulate in solder joints during the thermal cycling. This criterion suggests that solder joints fail as the strain energy accumulates and reaches a critical value. By using finite element analysis with a “ladder” procedure, both time-independent plastic strain energy and time-dependent creep strain energy are quantified. These are related to fatigue life by the equation: C = N*f (Ep + 0.13Ec), where C is the critical strain energy density, Nf is the fatigue life, Ep and Ec are plastic and creep strain energy density accumulation per cycle, respectively, for the eutectic Sn-Pb solders. By analyzing Hall and Sherry’s thermal cycling data (Hall and Sherry, 1986), it is found that creep is the predominant factor in deciding fatigue life. Creep accounts for 51 to 97 percent of the total accumulated strain energy, depending on the cycling profiles. This criterion is used to simulate crack propagation in a solder joint by analyzing the strain energy in small “domains” within the joint.


2013 ◽  
Vol 53 (5) ◽  
pp. 741-747 ◽  
Author(s):  
Shoho Ishikawa ◽  
Hironori Tohmyoh ◽  
Satoshi Watanabe ◽  
Tomonori Nishimura ◽  
Yoshikatsu Nakano

Author(s):  
Cemal Basaran ◽  
Hong Tang ◽  
Shihua Nie

Fatigue damage is a progressive process of material degradation. The objective of this study is to experimentally qualify the damage mechanism in solder joints in electronic packaging under thermal fatigue loading. Another objective of this paper is to show that damage mechanism under thermal cycling and mechanical cycling is very different. Elastic modulus degradation under thermal cycling, which is considered as a physically detectable quantity of material degradation, was measured by Nano-indenter. It was compared with tendency of inelastic strain accumulation of solder joints in Ball Grid Array (BGA) package under thermal cycling, which was measured by Moire´ interferometry. Fatigue damage evolution in solder joints with traditional load-drop criterion was also investigated by shear-strain hysteresis loops from strain-controlled cyclic shear testing of thin layer solder joints. Load-drop behavior was compared with elastic modulus degradation of solder joints under thermal cycling. Following conventional Coffin-Manson approach, S-N curve was obtained from isothermal fatigue testing with load-drop criterion. Coffin-Manson curves obtained from strain controlled mechanical tests were used to predict fatigue life of solder joints. In this paper it is shown that this approach underestimates the fatigue life by an order of magnitude. Results obtained in this project indicate that thermal fatigue and isothermal mechanical fatigue are completely different damage mechanism for microstructurally evolving materials.


Author(s):  
Deng Yun Chen ◽  
Michael Osterman

Solder interconnects in electronic assemblies are susceptible to failures due to environmental high strain rate impact and cyclic stresses. To mitigate the failures, adhesive bonds can be added after the solder assembly process to provide additional mechanical support. For ball grid array (BGA) packages, the adhesive is normally applied to the corners of the package and referred to as corner staking. In addition to corner staking, underfill is also a strategy used to mitigate the stresses on the solder joints. While components with underfill has been widely studied, the study of the impact of corner staking on the reliability of packages remains limited. This paper presents a study of corner-staked BGA packages with tin-3.0 silver-0.5 copper (SAC305) solder subjected to temperature cycling. Experimental temperature cycling is conducted to examine impact of the selected corner staking material on the fatigue life of BGAs. Further, finite element analysis is conducted to understand the influence of material properties of staking material on the fatigue life of BGAs. The result of the study indicates that the presence of corner staking, with selected material properties, reduces the damage on the solder joints under thermal cycling, and thus increases its fatigue life by about 80%. This paper may serve as a guidance for staking material selection to improve the fatigue life of solder joints of BGAs under thermal cycling.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lijuan Huang ◽  
Zhenghu Zhu ◽  
Hiarui Wu ◽  
Xu Long

PurposeAs the solution to improve fatigue life and mechanical reliability of packaging structure, the material selection in PCB stack-up and partitioning design on PCB to eliminate the electromagnetic interference by keeping all circuit functions separate are suggested to be optimized from the mechanical stress point of view.Design/methodology/approachThe present paper investigated the effect of RO4350B and RT5880 printed circuit board (PCB) laminates on fatigue life of the QFN (quad flat no-lead) packaging structure for high-frequency applications. During accelerated thermal cycling between −50 °C and 100 °C, the mismatched coefficients of thermal expansion (CTE) between packaging and PCB materials, initial PCB warping deformation and locally concentrated stress states significantly affected the fatigue life of the packaging structure. The intermetallics layer and mechanical strength of solder joints were examined to ensure the satisfactorily soldering quality prior to the thermal cycling process. The failure mechanism was investigated by the metallographic observations using a scanning electron microscope.FindingsTypical fatigue behavior was revealed by grain coarsening due to cyclic stress, while at critical locations of packaging structures, the crack propagations were confirmed to be accompanied with coarsened grains by dye penetration tests. It is confirmed that the cyclic stress induced fatigue deformation is dominant in the deformation history of both PCB laminates. Due to the greater CTE differences in the RT5880 PCB laminate with those of the packaging materials, the thermally induced strains among different layered materials were more mismatched and led to the initiation and propagation of fatigue cracks in solder joints subjected to more severe stress states.Originality/valueIn addition to the electrical insulation and thermal dissipation, electronic packaging structures play a key role in mechanical connections between IC chips and PCB.


2020 ◽  
Author(s):  
Hui Yang ◽  
Jihui Wu

Abstract The simulation of nano-silver solder joints in flip-chips is performed by the finite element software ANSYS, and the stress-strain distribution results of the solder joints are displayed. In this simulation, the solder joints use Anand viscoplastic constitutive model, which can reasonably simulate the stress and strain of solder joints under thermal cycling load. At the same time this model has been embedded in ANSYS software, so it is more convenient to use. The final simulation results show that the areas where the maximum stresses and strains occur at the solder joints are mostly distributed in the contact areas between the solder joints and the copper pillars and at the solder joints. During the entire thermal cycling load process, the area where the maximum change in stress and strain occurs is always at the solder joint, and when the temperature changes, the temperature at the solder joint changes significantly. Based on comprehensive analysis, the relevant empirical correction calculation equation is used to calculate and predict the thermal fatigue life of nano-silver solder joints. The analysis results provide a reference for the application of nano-silver solder in the electronic packaging industry.


2020 ◽  
Vol 37 (4) ◽  
pp. 165-171
Author(s):  
Dongbo Li ◽  
Jianpei Wang ◽  
Bing Yang ◽  
Yongle Hu ◽  
Ping Yang

Purpose This paper aims to perform experimental test on fatigue characteristics of package on package (POP) stacked chip assembly under thermal cycling load. Some suggestions for design to prolong fatigue life of POP stacked chip assembly are provided. Design/methodology/approach The POP stacked chip assembly which contains different package structure mode and chip position was manufactured. The fatigue characteristics of POP stacked chip assembly under thermal cycling load were tested. The fatigue load spectrum of POP stacked chip assembly under thermal cycling load was given. The fatigue life of chips can be estimated by using the creep–fatigue life prediction model based on different stress conditions. Findings The solder joint stress of top package is significantly less than that of bottom solder joints, and the maximum value occurs in the middle part of the solder joints inner ring. Originality/value This paper fulfils useful information about the thermal reliability of POP stacked chip assembly with different structure characteristics and materials parameters.


Sign in / Sign up

Export Citation Format

Share Document