Analogue Fluids for Cell Deformability Studies in Microfluidic Devices

Author(s):  
A. S. Moita ◽  
C. Caldeira ◽  
I. Gonçalves ◽  
R. Lima ◽  
E. J. Vega ◽  
...  
Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4153-4153
Author(s):  
Christina Caruso ◽  
Meredith E. Fay ◽  
Sunita I. Park ◽  
Todd A. Sulchek ◽  
Michael D. Graham ◽  
...  

Abstract Background: Iron deficiency anemia (IDA), which affects individuals of all ages worldwide, is an often overlooked and undertreated component of chronic disease, despite data correlating its association with adverse outcomes in patients with cardiovascular disease (von Haehling, Nat Rev Cardiol, 2015). While red blood cells (RBCs) in IDA are known to be smaller and contain less hemoglobin than healthy RBCs, how RBC deformability is altered in IDA remains poorly understood; some ektacytometry studies have observed impaired deformability in iron deficient RBCs (idRBCs), while others described either unchanged or increased deformability (Brandão, Clin Hemorheol Microcirc, 2009). Here we ask: can single cell biophysical techniques definitively determine whether idRBCs are less deformable than healthy RBCs and how heterogenous that phenomena may be? Recent investigations into IDA's role in cardiovascular disease have generally focused on the myocardium and coronary vasculature, yet much regarding other physiologic implications remains unknown, including whether idRBCs cause microvascular obstruction or vasculopathy. To address such questions, we leveraged a suite of microvascular models we developed. Methods: We first coupled our microfluidic capillary model with μEXACT, our customized automated particle tracking program for hematologic cell-based assays, to collect high-throughput velocity tracking of single RBCs from a healthy control and 2 IDA patients (anemic for age, ferritin <10 ng/mL) to create a single cell deformability index (sDI) for each RBC (Fig 1). Next, whole blood samples collected in EDTA tubes from the control and IDA patients were perfused into both straight 100μm wide channels (mimicking large venules) and branching 30μm wide microfluidic devices (mimicking smaller venules) at a constant shear rate for 30 minutes to observe if any occlusions or obvious alterations in flow were observed (Fig 2). Finally, using the straight 100μm channel microfluidic devices, human umbilical vein endothelial cells (HUVECs) were cultured throughout each microchannel and RBCs from a healthy control and 3 IDA patients were perfused in parallel microchannels for 4 hours. The endothelialized models were then fixed, permeabilized, and immunostained with antibodies against VCAM-1 and E-selectin, known markers of endothelial inflammation. Mean fluorescence intensity was measured to quantify endothelial inflammation (Fig 3). Results: sDI distribution histograms were obtained for healthy and IDA patient RBCs. The mean sDIs for IDA patient RBCs were decreased in comparison to the healthy RBCs. Additionally, both IDA patient's RBCs lacked a subpopulation of highly deformable RBCs, likely reticulocytes, seen in the healthy RBCs (Fig 1C). There was no evidence of microchannel occlusion for the healthy control or IDA patient whole blood samples in either the straight 100μm microchannels or branching 30μm microfluidic devices (Fig 2D). Finally, in our endothelialized microfluidic model, endothelium exposed to IDA patient RBCs exhibited increased VCAM-1 and E-selectin expression over endothelium exposed to healthy RBCs (Fig 3B). Conclusions: By utilizing an array of microfluidic models we can develop a more comprehensive understanding of the role idRBCs play systemically on microvasculature. Our combined microfluidic and image analysis system demonstrated decreased deformability in idRBCs and can offer detection of subpopulation differences that cannot be fully characterized with bulk techniques such as ektacytometry. So far, our data demonstrates that while no microvascular occlusion occurs, idRBCs contribute to endothelial inflammation. Additionally, the observation that physical interactions between endothelial cells and idRBCs are sufficient to cause endothelial inflammation warrants further investigation, as generally idRBCs had not been viewed as pro-inflammatory. Ongoing studies will couple unique sDI distribution curves with the degree of endothelial inflammation, as well as elucidate how these changes are associated with the degree of IDA or clinical events such as the initiation of iron supplementation. Utilizing atomic force microscopy to better understand how the idRBC membrane impacts deformability and developing biophysical computer simulations to determine if increased idRBC-endothelium interactions are observed in silico are also planned. Figure 1 Figure 1. Disclosures Lam: Sanguina, Inc.: Current holder of individual stocks in a privately-held company.


1984 ◽  
Vol 51 (01) ◽  
pp. 006-008 ◽  
Author(s):  
J J F Belch ◽  
B M McArdle ◽  
P Burns ◽  
G D O Lowe ◽  
C D Forbes

SummaryThere is an increased frequency of arterial thrombosis in cigarette smokers. The changes in blood coagulation seen in these subjects have been studied by many workers but results have not always been in agreement. We wished to study the effects of acute .smoking on platelet behaviour, fibrinolysis and haemorheology in ten habitual smokers, and to compare these results with nonsmoking controls. Results show that the smoking group had higher plasma fibrinogen (p <0.04), lower plasminogen (p <0.02) and plasminogen activator (p <0.05), and higher plasma viscosity (p <0.003). The changes seen in cigarette smokers after smoking three cigarettes were an increase in the rate of platelet aggregation to ADP (p <0.02), an increase in α2M, (p <0.02), and factor VIII RAG (p <0.05). Plasma viscosity was decreased (p <0.02) as was red cell deformability (p >0.02).We confirm an increased tendency to hypercoagulability in smokers compared to controls which becomes more pronounced immediately after smoking three cigarettes.


1979 ◽  
Author(s):  
M Drummond ◽  
G Lowe ◽  
J Belch ◽  
C Forbes ◽  
J Barbenel

We investigated the reproducibility and validity of a simple method of measuring red cell deformability (filtration of whole blood through 5 µ sieves) and its relationship to haematocrit, blood viscosity, fibrinogen, white cell count, sex and smoking. The mean coefficient of variation in normals was 3. 7%. Tanned red cells showed marked loss of deformability. Blood filtration rate correlated with haematocrit (r = 0. 99 on dilution of samples, r = 0. 7 in 120 normals and patients). After correction for haematocrit, deformability correlated with high shear viscosity, but not low shear viscosity, fibrinogen or white cell count. In 60 normals there was no significant difference between males and females, or smokers and non-smokers, but in 11 smokers there was an acute fall in deformability after smoking 3 cigarettes (p<0. 05). Reduced deformability was found in acute myocardial infarction (n = 15, p<0. 01) and chronic peripheral arterial disease (n = 15, p<0. 01). The technique is reproducible, detects rigid cells and appears useful in the study of vascular disease.


2016 ◽  
Vol 136 (6) ◽  
pp. 244-249
Author(s):  
Takahiro Watanabe ◽  
Fumihiro Sassa ◽  
Yoshitaka Yoshizumi ◽  
Hiroaki Suzuki

2020 ◽  
Vol 15 (1) ◽  
pp. 63-68
Author(s):  
Yu. V. Ulianova ◽  
A. M. Popov ◽  
N. P. Babichenko ◽  
K. V. Gorin ◽  
Ya. E. Sergeeva
Keyword(s):  

2021 ◽  
Vol 11 (8) ◽  
pp. 3404
Author(s):  
Majid Hejazian ◽  
Eugeniu Balaur ◽  
Brian Abbey

Microfluidic devices which integrate both rapid mixing and liquid jetting for sample delivery are an emerging solution for studying molecular dynamics via X-ray diffraction. Here we use finite element modelling to investigate the efficiency and time-resolution achievable using microfluidic mixers within the parameter range required for producing stable liquid jets. Three-dimensional simulations, validated by experimental data, are used to determine the velocity and concentration distribution within these devices. The results show that by adopting a serpentine geometry, it is possible to induce chaotic mixing, which effectively reduces the time required to achieve a homogeneous mixture for sample delivery. Further, we investigate the effect of flow rate and the mixer microchannel size on the mixing efficiency and minimum time required for complete mixing of the two solutions whilst maintaining a stable jet. In general, we find that the smaller the cross-sectional area of the mixer microchannel, the shorter the time needed to achieve homogeneous mixing for a given flow rate. The results of these simulations will form the basis for optimised designs enabling the study of molecular dynamics occurring on millisecond timescales using integrated mix-and-inject microfluidic devices.


Sign in / Sign up

Export Citation Format

Share Document