scholarly journals Climate-Smart Agriculture Practices for Mitigating Greenhouse Gas Emissions

Author(s):  
M. Zaman ◽  
K. Kleineidam ◽  
L. Bakken ◽  
J. Berendt ◽  
C. Bracken ◽  
...  

AbstractAgricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic global warming effect. Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural operations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20–40% of the soil organic carbon (SOC) is lost over time, following cultivation. We thus need to develop management practices that can maintain or even increase SOCstorage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate‐smart agriculture (CSA). Climate‐smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the frequency and extent of cultivation as a way to minimise soil C loss and/or to increase soil C storage. Fertiliser nitrogen (N) use efficiency can be improved to reduce fertilizer N application and N loss. Management measures can also be taken to minimise agricultural biomass burning. This chapter reviews the current literature on CSA practices that are available to reduce GHG emissions and increase soil Csequestration and develops a guideline on best management practices to reduce GHG emissions, increase C sequestration, and enhance crop productivity in agricultural production systems.

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 563
Author(s):  
Kelsey Anderson ◽  
Philip A. Moore ◽  
Jerry Martin ◽  
Amanda J. Ashworth

Gaseous emissions from poultry litter causes production problems for producers as well as the environment, by contributing to climate change and reducing air quality. Novel methods of reducing ammonia (NH3) and greenhouse gas (GHG) emissions in poultry facilities are needed. As such, our research evaluated GHG emissions over a 42 d period. Three separate flocks of 1000 broilers were used for this study. The first flock was used only to produce litter needed for the experiment. The second and third flocks were allocated to 20 pens in a randomized block design with four replicated of five treatments. The management practices studied included an unamended control; a conventional practice of incorporating aluminum sulfate (referred to as alum) at 98 kg/100 m2); a novel litter amendment made from alum mud, bauxite, and sulfuric acid (alum mud litter amendment, AMLA) applied at different rates (49 and 98 kg/100 m2) and methods (surface applied or incorporated). Nitrous oxide emissions were low for all treatments in flocks 2 and 3 (0.40 and 0.37 mg m2 hr−1, respectively). The formation of caked litter (due to excessive moisture) during day 35 and 42 caused high variability in CH4 and CO2 emissions. Alum mud litter amendment and alum did not significantly affect GHGs emissions from litter, regardless of the amendment rate or application method. In fact, litter amendments such as alum and AMLA typically lower GHG emissions from poultry facilities by reducing ventilation requirements to maintain air quality in cooler months due to lower NH3 levels, resulting in less propane use and concomitant reductions in CO2 emissions.


2021 ◽  
Author(s):  
Sylvia Vetter ◽  
Michael Martin ◽  
Pete Smith

<p>Reducing greenhouse gas (GHG) emissions in to the atmosphere to limit global warming is the big challenge of the coming decades. The focus lies on negative emission technologies to remove GHGs from the atmosphere from different sectors. Agriculture produces around a quarter of all the anthropogenic GHGs globally (including land use change and afforestation). Reducing these net emissions can be achieved through techniques that increase the soil organic carbon (SOC) stocks. These techniques include improved management practices in agriculture and grassland systems, which increase the organic carbon (C) input or reduce soil disturbances. The C sequestration potential differs among soils depending on climate, soil properties and management, with the highest potential for poor soils (SOC stock farthest from saturation).</p><p>Modelling can be used to estimate the technical potential to sequester C of agricultural land under different mitigation practices for the next decades under different climate scenarios. The ECOSSE model was developed to simulate soil C dynamics and GHG emissions in mineral and organic soils. A spatial version of the model (GlobalECOSSE) was adapted to simulate agricultural soils around the world to calculate the SOC change under changing management and climate.</p><p>Practices like different tillage management, crop rotations and residue incorporation showed regional differences and the importance of adapting mitigation practices under an increased changing climate. A fast adoption of practices that increase SOC has its own challenges, as the potential to sequester C is high until the soil reached a new C equilibrium. Therefore, the potential to use soil C sequestration to reduce overall GHG emissions is limited. The results showed a high potential to sequester C until 2050 but much lower rates in the second half of the century, highlighting the importance of using soil C sequestration in the coming decades to reach net zero by 2050.</p>


Author(s):  
Ukpe Udeme Henrietta ◽  
Djomo Choumbou Raoul Fani ◽  
Ogebe Frank ◽  
Gbadebo Odularu ◽  
Oben Njock Emmanuel

2018 ◽  
Author(s):  
Jacqueline R. England ◽  
Raphael Armando Viscarra Rossel

Abstract. Maintaining or increasing soil organic carbon (C) is important for securing food production, and for mitigating greenhouse gas (GHG) emissions, climate change and land degradation. Some land management practices in cropping, grazing, horticultural and mixed farming systems can be used to increase organic C in soil, but to assess their effectiveness, we need accurate and cost-efficient methods for measuring and monitoring the change. To determine the stock of organic C in soil, one needs measurements of soil organic C concentration, bulk density and gravel content, but using conventional laboratory-based analytical methods is expensive. Our aim here is to review the current state of proximal sensing for the development of new soil C accounting methods for emissions reporting and in emissions reduction schemes. We evaluated sensing techniques in terms of their rapidity, cost, accuracy, safety, readiness and their state of development. The most suitable technique for measuring soil organic C concentrations appears to be vis–NIR spectroscopy and for bulk density active gamma-ray attenuation. Sensors for measuring gravel have not been developed, but an interim solution with rapid wet-sieving and automated measurement appears useful. Field-deployable, multi-sensor systems are needed for cost-efficient soil C accounting. Proximal sensing can be used for soil organic C accounting, but the methods need to be standardised and procedural guidelines need to be developed to ensure proficient measurement and accurate reporting and verification. This is particularly important if the schemes use financial incentives for landholders to adopt management practices to sequester soil organic C. We list and discuss the requirements for the development of new soil C accounting methods that are based on proximal sensing, including requirements for recording, verification and auditing.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2083
Author(s):  
Ridha Ibidhi ◽  
Sergio Calsamiglia

Greenhouse gas emissions and the carbon footprint (CF) were estimated in twelve Spanish dairy farms selected from three regions (Mediterranean, MED; Cantabric, CAN; and Central, CEN) using a partial life cycle assessment through the Integrated Farm System Model (IFSM). The functional unit was 1 kg of energy corrected milk (ECM). Methane emissions accounted for the largest contribution to the total greenhouse gas (GHG) emissions. The average CF (kg CO2-eq/kg of ECM) was 0.84, being the highest in MED (0.98), intermediate in CEN (0.84), and the lowest in CAN (0.67). Two extreme farms were selected for further simulations: one with the highest non-enteric methane (MED1), and another with the highest enteric methane (CAN2). Changes in management scenarios (increase milk production, change manure collection systems, change manure-type storage method, change bedding type and installation of an anaerobic digester) in MED1 were evaluated with the IFSM model. Changes in feeding strategies (reduce the forage: concentrate ratio, improve forage quality, use of ionophores) in CAN2 were evaluated with the Cornell Net Carbohydrate and Protein System model. Results indicate that changes in management (up to 27.5% reduction) were more efficient than changes in dietary practices (up to 3.5% reduction) in reducing the carbon footprint.


2020 ◽  
Author(s):  
Virginia Sánchez-Navarro ◽  
Mariano Marcos-Pérez ◽  
Raúl Zornoza

<p><strong>Legume crops have been proposed as a way of reducing greenhouse gas (GHG) emissions because both, their rhizosphere behaviour and their ability to fix atmospheric N reducing the need of external N fertilizer. Moreover, the establishment of organic agriculture has been proposed as a sustainable strategy to enhance the delivery of ecosystem services, including mitigation of climate change by decreases in GHG emissions and increases in soil C sequestration. The aim of this study was to assess the effect of the association between cowpea (Vigna unguiculata L.) and melon (Cucumis melo L.) growing in different </strong>intercropping patterns <strong>on soil CO<sub>2</sub> and N<sub>2</sub>O emissions compared to cowpea and melon monocultures </strong><strong>under organic management as a possible strategy for climate change mitigation. Soil </strong><strong>CO<sub>2</sub> and N<sub>2</sub>O</strong><strong> emissions were weekly measured in melon and cowpea rows using the dynamic chamber method during one cropping cycle in 2019. Results indicated that melon growing as monoculture was related to increases in </strong> <strong>O cumulative emissions (0.431 g m<sup>-2</sup>) compared to the average of the rest of treatments (0.036 g m<sup>-2</sup>). Cowpea growing as monoculture was related to decreases in </strong><strong>CO<sub>2</sub></strong> <strong>cumulative emissions (390 g m<sup>-2</sup>) compared with the other treatments (512 g m<sup>-2 </sup>average). However, N<sub>2</sub>O and </strong><strong>CO<sub>2</sub></strong><strong> emission patterns did not directly follow soil moisture patterns in the experimental period, with no significant correlations. Finally there were no significant differences among intercropping treatments with regard to NO<sub>2</sub> and </strong><strong>CO<sub>2 </sub></strong><strong>emissions. Further measurements are needed to monitor the evolution of GHG emissions under these cropping systems and confirm the trend observed</strong>.</p>


2020 ◽  
Author(s):  
Matthias Kuhnert ◽  
Viktoria Oliver ◽  
Andrea Volante ◽  
Stefano Monaco ◽  
Yit Arn Teh ◽  
...  

<p>Rice cultivation has high water consumption and emits large quantities of greenhouse gases. Therefore, rice fields provide great potential to mitigate GHG emissions by modifications to cultivation practices or external inputs. Previous studies showed differences for impacts of alternated wetting and drying (AWD) practices for above-ground and below-ground biomass, which might have long term impacts on soil organic carbon stocks. The objective of this study is to parameterise and evaluate the model ECOSSE for rice simulations based on data from an Italian rice test site where the effects of different water management practices and 12 common European cultivars, on yield and GHG emissions, were investigated. Special focus is on the differences of the impacts on the greenhouse gas emissions for AWD and continuous flooding (CF). The model is calibrated and tested for field measurements and is used for model experiments to explore climate change impacts and long-term effects. Long term carbon storage is of particular interest since it is a suitable mitigation strategy. As experiments showed different impacts of management practices on the below ground biomass, long term model experiments are used to estimate impacts on SOC of the different practices. The measurements also allow an analysis of the impacts of different cultivars and the uncertainty of model approaches using a single data set for calibration.</p>


Soil Research ◽  
2016 ◽  
Vol 54 (2) ◽  
pp. 254 ◽  
Author(s):  
Eva Erhart ◽  
Harald Schmid ◽  
Wilfried Hartl ◽  
Kurt-Jürgen Hülsbergen

Compost fertilisation is one way to close material cycles for organic matter and plant nutrients and to increase soil organic matter content. In this study, humus, nitrogen (N) and energy balances, and greenhouse gas (GHG) emissions were calculated for a 14-year field experiment using the model software REPRO. Humus balances showed that compost fertilisation at a rate of 8 t/ha.year resulted in a positive balance of 115 kg carbon (C)/ha.year. With 14 and 20 t/ha.year of compost, respectively, humus accumulated at rates of 558 and 1021 kg C/ha.year. With mineral fertilisation at rates of 29–62 kg N/ha.year, balances were moderately negative (–169 to –227 kg C/ha.year), and a clear humus deficit of –457 kg C/ha.year showed in the unfertilised control. Compared with measured soil organic C (SOC) data, REPRO predicted SOC contents fairly well with the exception of the treatments with high compost rates, where SOC contents were overestimated by REPRO. GHG balances calculated with soil C sequestration on the basis of humus balances, and on the basis of soil analyses, indicated negative GHG emissions with medium and high compost rates. Mineral fertilisation yielded net GHG emissions of ~2000 kg CO2-eq/ha.year. The findings underline that compost fertilisation holds potential for C sequestration and for the reduction of GHG emissions, even though this potential is bound to level off with increasing soil C saturation.


Daedalus ◽  
2015 ◽  
Vol 144 (4) ◽  
pp. 8-23 ◽  
Author(s):  
David Tilman ◽  
Michael Clark

Secure and nutritious food supplies are the foundation of human health and development, and of stable societies. Yet food production also poses significant threats to the environment through greenhouse gas emissions, pollution from fertilizers and pesticides, and the loss of biodiversity and ecosystem services from the conversion of vast amounts of natural ecosystems into croplands and pastures. Global agricultural production is on a trajectory to double by 2050 because of both increases in the global population and the dietary changes associated with growing incomes. Here we examine the environmental problems that would result from these dietary shifts toward greater meat and calorie consumption and from the increase in agricultural production needed to provide this food. Several solutions, all of which are possible with current knowledge and technology, could substantially reduce agriculture's environmental impacts on greenhouse gas emissions, land clearing, and threats to biodiversity. In particular, the adoption of healthier diets and investment in increasing crop yields in developing nations would greatly reduce the environmental impacts of agriculture, lead to greater global health, and provide a path toward a secure and nutritious food supply for developing nations.


2015 ◽  
Vol 24 (4) ◽  
Author(s):  
Jelena Ariva ◽  
Ants Hannes Viira ◽  
Reet Põldaru ◽  
Jüri Roots

In order to respond to increasing global food demand and provide for national economic growth, the Estonian Dairy Strategy for 2012−2020 aims to achieve a 30% growth in milk production. At the same time, there is a global attempt to reduce greenhouse gas (GHG) emissions. This paper analyses the medium-term (2015−2020) projections for milk production and associated GHG emissions from dairy cows in Estonia. The FAPRI-GOLD type market model of Estonian agriculture, which is used for projections of agricultural production, was supplemented with a module that helps project GHG emissions. The paper demonstrates the endogenisation of GHG emission factors in a relatively general agricultural market model context. The results imply that increasing milk production by 30% by 2020 would jeopardise Estonia’s commitments with regard to agricultural GHG emissions. However, the average GHG emission per tonne of produced milk will decline, thus reducing the “carbon footprint” of milk production.


Sign in / Sign up

Export Citation Format

Share Document