Recent Developments in the Electrophoretic Deposition of Carbon Nanomaterials

Author(s):  
Artur P. Terzyk ◽  
Monika Zięba ◽  
Stanisław Koter ◽  
Emil Korczeniewski ◽  
Wojciech Zięba ◽  
...  
Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 782
Author(s):  
Andrzej Zielinski ◽  
Michal Bartmanski

Coatings deposited under an electric field are applied for the surface modification of biomaterials. This review is aimed to characterize the state-of-art in this area with an emphasis on the advantages and disadvantages of used methods, process determinants, and properties of coatings. Over 170 articles, published mainly during the last ten years, were chosen, and reviewed as the most representative. The most recent developments of metallic, ceramic, polymer, and composite electrodeposited coatings are described focusing on their microstructure and properties. The direct cathodic electrodeposition, pulse cathodic deposition, electrophoretic deposition, plasma electrochemical oxidation in electrolytes rich in phosphates and calcium ions, electro-spark, and electro-discharge methods are characterized. The effects of electrolyte composition, potential and current, pH, and temperature are discussed. The review demonstrates that the most popular are direct and pulse cathodic electrodeposition and electrophoretic deposition. The research is mainly aimed to introduce new coatings rather than to investigate the effects of process parameters on the properties of deposits. So far tests aim to enhance bioactivity, mechanical strength and adhesion, antibacterial efficiency, and to a lesser extent the corrosion resistance.


2015 ◽  
Vol 44 (13) ◽  
pp. 4433-4453 ◽  
Author(s):  
Frederico R. Baptista ◽  
S. A. Belhout ◽  
S. Giordani ◽  
S. J. Quinn

The structural diversity of carbon nanomaterials provides an array of unique electronic, magnetic and optical properties, which when combined with their robust chemistry and ease of manipulation, makes them attractive candidates for sensor applications. In this review recent developments in the use of carbon nanoparticles and nanostructures as sensors and biosensors are explored.


Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 397 ◽  
Author(s):  
Zhenguo Zhang ◽  
Yulin Cong ◽  
Yichun Huang ◽  
Xin Du

With the development of nanomaterials and sensor technology, nanomaterials-based electrochemical immunosensors have been widely employed in various fields. Nanomaterials for electrode modification are emerging one after another in order to improve the performance of electrochemical immunosensors. When compared with traditional detection methods, electrochemical immunosensors have the advantages of simplicity, real-time analysis, high sensitivity, miniaturization, rapid detection time, and low cost. Here, we summarize recent developments in electrochemical immunosensors based on nanomaterials, including carbon nanomaterials, metal nanomaterials, and quantum dots. Additionally, we discuss research challenges and future prospects for this field of study.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 967
Author(s):  
Giorgio Speranza

Recent advances in nanomaterial design and synthesis has resulted in robust sensing systems that display superior analytical performance. The use of nanomaterials within sensors has accelerated new routes and opportunities for the detection of analytes or target molecules. Among others, carbon-based sensors have reported biocompatibility, better sensitivity, better selectivity and lower limits of detection to reveal a wide range of organic and inorganic molecules. Carbon nanomaterials are among the most extensively studied materials because of their unique properties spanning from the high specific surface area, high carrier mobility, high electrical conductivity, flexibility, and optical transparency fostering their use in sensing applications. In this paper, a comprehensive review has been made to cover recent developments in the field of carbon-based nanomaterials for sensing applications. The review describes nanomaterials like fullerenes, carbon onions, carbon quantum dots, nanodiamonds, carbon nanotubes, and graphene. Synthesis of these nanostructures has been discussed along with their functionalization methods. The recent application of all these nanomaterials in sensing applications has been highlighted for the principal applicative field and the future prospects and possibilities have been outlined.


2009 ◽  
Vol 412 ◽  
pp. 299-305 ◽  
Author(s):  
Bram Neirinck ◽  
Jan Fransaer ◽  
Omer Van der Biest ◽  
Jef Vleugels

Recent developments demonstrated that liquid templates in the form of solid particles stabilized emulsions can be used to produce porous materials. The use of such emulsions offers the possibility to control the porous properties over a wide range of pore sizes and porosities for a variety of materials. In addition, the liquid nature of the template enables the formed products to be sintered without a low temperature debinding step. In this work, the electrophoretic deposition (EPD) of these liquid templates for the production of porous alumina is reported. The experimental parameters needed to obtain stable emulsions, their influence on the final porous properties, as well as the influence of the deposition parameters are discussed.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiu Liang ◽  
Ning Li ◽  
Runhao Zhang ◽  
Penggang Yin ◽  
Chenmeng Zhang ◽  
...  

AbstractThe sensing of bioactive molecules based on photochemical techniques has become one of the fastest-growing scientific fields. Surface-enhanced Raman scattering (SERS) is a highly sensitive technique for the detection of low-concentration molecules, including DNA, microRNA, proteins, blood, and bacteria; single-cell detection and identification; bioimaging; and disease diagnosis, providing abundant structural information for biological analytes. One rapidly developing field of SERS biosensor design is the use of carbon-based nanomaterials as substrate materials, such as zero-dimensional carbon quantum dots, one-dimensional carbon nanotubes, two-dimensional graphene, and graphene oxide (GO) and three-dimensional spatial carbon nanomaterials or carbon-based core-shell nanostructures. In this review, we describe the recent developments in SERS biosensors, in particular carbon-based SERS, for the detection of bioactive molecules. We systematically survey recent developments in carbon nanomaterial-based SERS biosensors, focusing on fundamental principles for carbon-based materials for SERS biosensor design, fabrication, and operation, and provide insights into their rapidly growing future potential in the fields of biomedical and biological engineering, in situ analysis, quantitative analysis, and flexible photoelectric functional materials. As such, this review can play the role of a roadmap to guide researchers toward concepts that can be used in the design of next-generation SERS biosensors while also highlighting current advancements in this field.


2016 ◽  
Vol 45 (5) ◽  
pp. 1273-1307 ◽  
Author(s):  
Ming Zhou ◽  
Hsing-Lin Wang ◽  
Shaojun Guo

We summarize and discuss recent developments of different-dimensional advanced carbon nanomaterial-based noble-metal-free high-efficiency oxygen reduction electrocatalysts, including heteroatom-doped, transition metal-based nanoparticle-based, and especially iron carbide (Fe3C)-based carbon nanomaterial composites.


Sign in / Sign up

Export Citation Format

Share Document