Sulfoaluminate Cement and Low-Temperature Roasting Additive from Low Aluminate Raw Materials with a High Content of Silicon Oxide

Author(s):  
T. Ye. Goloviznina ◽  
V. M. Konovalov ◽  
I. A. Morozova
Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 194
Author(s):  
Joanna Pawłat ◽  
Piotr Terebun ◽  
Michał Kwiatkowski ◽  
Katarzyna Wolny-Koładka

Sterilization of municipal waste for a raw material for the production of refuse-derived fuel and to protect surface and ground waters against biological contamination during transfer and storage creates a lot of problems. This paper evaluates the antimicrobial potential of non-equilibrium plasma in relation to the selected groups of microorganisms found in humid waste. The proposed research is to determine whether mixed municipal waste used for the production of alternative fuels can be sterilized effectively using low-temperature plasma generated in a gliding arc discharge reactor in order to prevent water contamination and health risk for working staff. This work assesses whether plasma treatment of raw materials in several process variants effectively eliminates or reduces the number of selected groups of microorganisms living in mixed municipal waste. The presence of vegetative bacteria and endospores, mold fungi, actinobacteria Escherichia coli, and facultative pathogens, i.e., Staphylococcus spp., Salmonella spp., Shigella spp., Enterococcus faecalis and Clostridium perfringens in the tested material was microbiologically analyzed. It was found that the plasma treatment differently contributes to the elimination of various kinds of microorganisms in the analyzed raw materials. The effectiveness of sterilization depended mainly on the time of raw materials contact with low-temperature plasma. The results are very promising and require further research to optimize the proposed hygienization process.


2012 ◽  
Vol 206 (23) ◽  
pp. 4814-4821 ◽  
Author(s):  
H. Caquineau ◽  
L. Aiche ◽  
H. Vergnes ◽  
B. Despax ◽  
B. Caussat

1999 ◽  
Vol 85 (5) ◽  
pp. 2921-2928 ◽  
Author(s):  
Toshiko Mizokuro ◽  
Kenji Yoneda ◽  
Yoshihiro Todokoro ◽  
Hikaru Kobayashi

2011 ◽  
Vol 1287 ◽  
Author(s):  
Anupama Mallikarjunan ◽  
Laura M Matz ◽  
Andrew D Johnson ◽  
Raymond N Vrtis ◽  
Manchao Xiao ◽  
...  

ABSTRACTThe electrical and physical quality of gate and passivation dielectrics significantly impacts the device performance of thin film transistors (TFTs). The passivation dielectric also needs to act as a barrier to protect the TFT device. As low temperature TFT processing becomes a requirement for novel applications and plastic substrates, there is a need for materials innovation that enables high quality plasma enhanced chemical vapor deposition (PECVD) gate dielectric deposition. In this context, this paper discusses structure-property relationships and strategies for precursor development in silicon nitride, silicon oxycarbide (SiOC) and silicon oxide films. Experiments with passivation SiOC films demonstrate the benefit of a superior precursor (LkB-500) and standard process optimization to enable lower temperature depositions. For gate SiO2 deposition (that are used with polysilicon TFTs for example), organosilicon precursors containing different types and amounts of Si, C, O and H bonding were experimentally compared to the industry standard TEOS (tetraethoxysilane) at different process conditions and temperatures. Major differences were identified in film quality especially wet etch rate or WER (correlating to film density) and dielectric constant (k) values (correlating to moisture absorption). Gate quality SiO2 films can be deposited by choosing precursors that can minimize residual Si-OH groups and enable higher density stable moisture-free films. For e.g., the optimized precursor AP-LTO® 770 is clearly better than TEOS for low temperature PECVD depositions based on density, WER, k charge density (measured by flatband voltage or Vfb); and leakage and breakdown voltage (Vbd) measurements. The design and development of such novel precursors is a key factor to successfully enable manufacturing of advanced low temperature processed devices.


2011 ◽  
Vol 236-238 ◽  
pp. 708-714 ◽  
Author(s):  
Hong An ◽  
Shu Gang Gao ◽  
Shuang Li ◽  
Yan Xin Xie

The n-tetradecylacrylate-vinyl acetate copolymer (PPV) was prepared from n-tetradecylacrylate and vinyl acetate. The PPV was employed as pour point depressant to improve the low-temperature fluidity of the -20# diesel from Daqing Petrochemical Company. The result indicated that the solidification (SP) and the cold filter plugging point (CFPP) were affected largely by PPV. And when mass fraction of PPV -14(copolymerization conditions: 80 °C,w(benzoyl peroxide)1%(total weight of raw materials), n(vinyl acetate)∶n(n- tetradecanolacrylate) = 4∶1 ) in diesel fuel was 0.1%wt, the SP reduced by 15.0 °C, the CFPP reduced by 6.0 °C simultaneously; We analysise the different molecular weight of PPV-14, and discover that the molecular weight of PPV-14 is ralated to the the low-temperature fluidity of the -20# diesel from Daqing Petrochemical Company. When mass fraction of PPV -14(molecular weight is 15000, distribution coefficient is 3.11) in diesel fuel was 0.1% wt, the SP reduced by 18.0 °C, the CFPP reduced by 7.0 °C, simultaneously.


2013 ◽  
Vol 745-746 ◽  
pp. 673-678 ◽  
Author(s):  
Wei Hui Jiang ◽  
Zhi Fang Xu ◽  
Jian Min Liu ◽  
Qing Xia Zhu ◽  
Quan Zhang

Aluminum titanate (Al2TiO5) powder has been synthesized at low temperature via nonhydrolytic sol-gel method by using aluminum powder as aluminum source, titanium tetrachloride as titanium source, anhydrous ethanol as oxygen donor with different catalysts. The phase transformation of aluminum titanate xerogel powder during heat treatment and the influence of the mixing orders of raw materials, catalyst kinds on the synthesis of aluminum titanate were investigated by means of differential-thermal analysis (DTA-TG), X-ray diffraction (XRD), transmission electron microscope (TEM). The results indicated that aluminum titanate powder was easily synthesized at 750 °C by using AlCl3 as catalyst with a mixing order of adding TiCl4 before AlCl3 into aluminum alcohol mixture. The catalytic order of the different catalysts in the preparation process of aluminum titanate is: FeCl3> AlCl3> MgCl2. The catalyst promoted the activation of metal aluminum powder and played a major role in the synthesis of aluminum titanate powder at low temperature via nonhydrolytic sol-gel method.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 260
Author(s):  
Jong-Beom Park ◽  
Jun-Su Choi ◽  
Hye-Won Park ◽  
Sae-Byuk Lee ◽  
Heui-Dong Park

Yakju, a traditional fermented beverage in Korea, is prepared using various raw materials and methods, and, hence, exhibits various characteristics. Low-temperature-fermented yakju can inhibit the growth of undesirable bacteria and is known for its unique flavor and refreshing taste. To increase the production of volatile aromatic compounds in yakju, strains with strong resistance to low temperatures and excellent production of volatile aromatic compounds were screened from indigenous fruits (grape, persimmon, plum, aronia, wild grape) and nuruk in Korea. One Saccharomyces cerevisiae and three non-Saccharomyces strains were finally screened, and yakju was fermented at 15 °C through mono/co-culture. The analysis of volatile aromatic compounds showed that S. cerevisiae W153 produced 1.5 times more isoamyl alcohol than the control strain and reduced the production of 2,3-butanediol by a third. Similarly, a single culture of Pichia kudriavzevii N373 also produced 237.7 mg/L of ethyl acetate, whereas Hanseniaspora vineae G818 produced ~11 times greater levels of 2-phenethyl acetate than the control. Alternatively, Wickerhamomyces anomalus A159 produced 95.88 mg/L of ethyl hexadecanoate. During principal component analysis, we also observed that the co-culture sample exhibited characteristics of both volatile aroma compounds of the single cultured sample of each strain. Our results suggest that yakju with unique properties can be prepared using various non-Saccharomyces strains.


Sign in / Sign up

Export Citation Format

Share Document