scholarly journals Semantic Enrichment of 3D Models Based on Ontology Integration

Author(s):  
Stéphane Nzetchou ◽  
Alexandre Durupt ◽  
Benoit Eynard ◽  
Sébastien Remy

AbstractThe rise of new technologies has led to a growth in the number of 3D models. They can come from various source, hence they are heterogeneous and complex. The level of 3D data access is often a function of the user’s expertise since the 3D data are often registered to different file formats. Some file formats do not show the data tree, as IGES. For using information inside a 3D model, that does not show a data tree, each company adopts his own system that will allow him to access easily to 3D model in order to exploit the hidden knowledge within the models. In this article, we are going to speak about technologies that helps user to exploit and knowledge coming from different file formats. In addition, we are going to present a system named VAQUERO that uses ontology to access, store and share knowledge coming from 3D models.

2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
Mingquan Zhou ◽  
Qingsong Huo ◽  
Guohua Geng ◽  
Xiaojing Liu

As the numbers of 3D models available grow in many application fields, there is an increasing need for a search method to help people find them. Unfortunately, traditional search techniques are not always effective for 3D data. In this paper, we describe a novel method of interactive 3D model retrieval with building blocks. First, by using a cube block as the baseblock in a 3D virtual space, we may construct the query model with human-computer interaction method. Then through retrieving the polygon model of the database generated by the voxel model, we may get retrieval results in real time. Experiments are conducted to evaluate the performance of the proposed method.


2020 ◽  
Vol 8 (3) ◽  
pp. 143-150
Author(s):  
Haqul Baramsyah ◽  
Less Rich

The digital single lens reflex (DSLR) cameras have been widely accepted to use in slope face photogrammetry rather than the expensive metric camera used for aerial photogrammetry. 3D models generated from digital photogrammetry can approach those generated from terrestrial laser scanning in term of scale and level of detail. It is cost effective and has equipment portability. This paper presents and discusses the applicability of close-range digital photogrammetry to produce 3D models of rock slope faces. Five experiments of image capturing method were conducted to capture the photographs as the input data for processing. As a consideration, the appropriate baseline lengths to capture the slope face to get better result are around 1/6 to 1/8 of target distance.  A fine quality of 3D model from data processing is obtained using strip method and convergent method with 80% overlapping in each photograph. A random camera positions with different distances from the slope face can also generate a good 3D model, however the entire target should be captured in each photograph. The accuracy of the models is generated by comparing the 3D models produced from photogrammetry with the 3D data obtained from laser scanner. The accuracy of 3D models is quite satisfactory with the mean error range from 0.008 to 0.018 m.


2010 ◽  
Vol 1 (2) ◽  
pp. 133 ◽  
Author(s):  
Ana Martínez Carrillo ◽  
Arturo Ruiz Rodríguez ◽  
Miguel Ángel Rubio Paramio

<p>The documentation system of the archaeological material has development in the last years thanks to the application of new technologies. These innovations have been quite useful in the field of the documentation, analysis and visualization of the archaeological artefacts.</p><p>In this article a methodology for the achievement of 3D model of archaeological pottery is exposed. This methodology fits within the CATA project (Archaeological Wheel Pottery of Andalusia in its acronyms in Spanish). The main objective of the project is the implementation of a database which is accessible by Internet, containing assorted information about pottery vessels and fragments found in Andalusia in different periods. This reference collection contains information concerning not only the manufacture process, the description of the surface treatment, or the context of finding of the ceramics, but also 3D models that allows a better knowledge of the vessel.</p>


2018 ◽  
Vol 2 ◽  
pp. e26561
Author(s):  
Jiangning Wang ◽  
Jing Ren ◽  
Tianyu Xi ◽  
Siqin Ge ◽  
Liqiang Ji

With the continuous development of imaging technology, the amount of insect 3D data is increasing, but research on data management is still virtually non-existent. This paper will discuss the specifications and standards relevant to the process of insect 3D data acquisition, processing and analysis. The collection of 3D data of insects includes specimen collection, sample preparation, image scanning specifications and 3D model specification. The specimen collection information uses existing biodiversity information standards such as Darwin Core. However, the 3D scanning process contains unique specifications for specimen preparation, depending on the scanning equipment, to achieve the best imaging results. Data processing of 3D images includes 3D reconstruction, tagging morphological structures (such as muscle and skeleton), and 3D model building. There are different algorithms in the 3D reconstruction process, but the processing results generally follow DICOM (Digital Imaging and Communications in Medicine) standards. There is no available standard for marking morphological structures, because this process is currently executed by individual researchers who create operational specifications according to their own needs. 3D models have specific file specifications, such as object files (https://en.wikipedia.org/wiki/Wavefront_.obj_file) and 3D max format (https://en.wikipedia.org/wiki/.3ds), which are widely used at present. There are only some simple tools for analysis of three-dimensional data and there are no specific standards or specifications in Audubon Core (https://terms.tdwg.org/wiki/Audubon_Core), the TDWG standard for biodiversity-related multi-media. There are very few 3D databases of animals at this time. Most of insect 3D data are created by individual entomologists and are not even stored in databases. Specifications for the management of insect 3D data need to be established step-by-step. Based on our attempt to construct a database of 3D insect data, we preliminarily discuss the necessary specifications.


10.14311/672 ◽  
2005 ◽  
Vol 45 (1) ◽  
Author(s):  
J. Hodač

The development of methods for 3D data acquisition, together with progress in information technologies raises the question of creating and using 3D models and 3D information systems (IS) of historical sites and buildings. This paper presents the current state of the “Live Theatre” project. The theme of the project is the proposal and realisation of a 3D IS of the baroque theatre at Eeský Krumlov castle (UNESCO site).The project is divided into three main stages – creation of a 3D model, proposal of a conception for a 3D IS, and realisation of a functional prototype. 3D data was acquired by means of photogrammetric and surveying methods. An accurate 3D model (photo-realistic, textured) was built up with MicroStation CAD system. The proposal of a conception of a 3D IS was the main outcome of the author’s dissertation. The essential feature of the proposed conception is the creation of subsystems targeted on three spheres – management, research and presentation of the site. The functionality of each subsystem is connected with its related sphere; however, each subsystem uses the same database. The present stage of the project involves making a functional prototype (with sample data). During this stage we are working on several basic technological topics. At present we are concerned with 3D data, its formats, format conversions (e.g. DGN _ VRML) and its connection to other types of data. After that, we will be seeking a convenient technical solution based on network technologies (Internet) and an appropriate layout for the data (database). The project is being carried out in close co-operation with the administration of the castle and some other partners. This stage of the project will be completed in December 2005.A functional prototype and the information acquired by testing it will form the basis for the final proposal of a complex IS of a historical site. The final proposal and appropriate technology will be the outcome of the project. The realisation of a complex 3D IS will then follow. The results will be exploitable both for site management and for organisations working in the area of presenting historical sites and creating multimedia shows. 


2015 ◽  
Vol 6 (12) ◽  
pp. 58 ◽  
Author(s):  
José L. Caro ◽  
Salvador Hansen

<p>Everyone knows the importance of new technologies and the growth they have had in mobile devices. Today in the field of study and dissemination of cultural heritage (including archaeological), the use of digital 3D models and associated technologies are a tool to increase the registration quality and consequently a better basis for interpretation and dissemination for cultural tourism, education and research. Within this area is gaining positions photogrammetry over other technologies due to its low cost. We can generate 3D models from forografí as through a set of algorithms that are able to obtain very approximate models and very realistic textures. In this paper we propose the use of game-engines to incorporate one element diffusion: the ability to navigate the 3D model realistically. As a case study we use a Menga dolmen that will serve as a study and demonstration of the techniques employed. </p>


2021 ◽  
Vol 12 (25) ◽  
pp. 16
Author(s):  
Alejandro Andrés Ferrari ◽  
Joaquín Ignacio Izaguirre ◽  
Félix Alejandro Acuto

<p>Like other expansive polities, the expansion of the Inca empire across the highlands and lowlands of South America is not only a history of trade and warfare, but also of mesmerizing public performances that yielded new and memorable experiences. During highly ritualized public celebratory events, the local polities gained first-hand access to the imperial liturgy, which was vital to promote and legitimate the Inca cosmology across the newly acquired lands. Especially in the last 20 years, new technologies, an ever-growing corpus of archaeological data, as well as increasing hardware capacity and software development, make it possible to emulate the scenes that people got to witness during the Inca public events, at a home computer scale and without complex and expensive equipment. Furthermore, it prompts us to test and apply new tools and academic dissemination techniques, perhaps more suitable to current technologies and means of knowledge storage and circulation. This article presents the process of building a three-dimensional (3D) model that, on the one hand, combines historical, ethnographic, and archaeological data with Geographic Information System (GIS) datasets; on the other hand, it uses detailed architectural analysis and astronomical measurements. The objective is to yield renders that accurately display the atmospheric and lighting conditions prevailing when the site was inhabited. We will offer a detailed description of all methods, techniques, equipment, and software used to create the model and the parameters for rendering the images. The authors intend to exemplify how 3D modelling goes well beyond the 3D model as a product in itself; it becomes a fundamental tool that encouraged us to test new variables and discuss new interpretations about this settlement. Results indicate that its builders designed these settlement's Inca compounds to show off the imperial capabilities and constructive proficiency, to convey exceptional, memorable experiences to its residents and visitors, and to stage explicit links between the imperial representatives and some fundamental procreative components of the Andean cosmos. In doing so, Guitián's plaza served to stage and communicate the privileged role the imperial representatives claimed to have in a broader cosmological scheme.</p><p>Highlights:</p><ul><li><p>Inca public performances were finely choreographed so that objects, places, people, landscape, and skyscape features interacted according to the main principles of imperial cosmology.</p></li><li><p>Current mid-range hardware and specialized yet reasonably user-friendly software are suitable to create accurate three-dimensional (3D) models combining historical, archaeological, and astronomical data.</p></li><li><p>Creating such a detailed 3D model contributes to cultural heritage and academic dissemination and prompted us to revise and broaden our interpretations.</p></li></ul>


Author(s):  
A. Estela ◽  
J. Hamacher

The "Instituto Colombiano de Antropología e Historia" (ICANH) started a new conservation project for the "San Agustín Archaeological Park" (Huila, Colombia) in 2013. The objectives of this project are the documentation, conservation, and preservation of the numerous monolithic statues mainly by integrating the use of new technologies (3D models). A first phase of the project has been completed, resulting in three-dimensional models of 66 of the monolithic sculptures in San Agustín. The methodology developed in this first phase will show the way for other heritage sites in Colombia and for subsequent phases applied to the archaeological park. The 3D data has been obtained using two types of data acquisition technology: the Mantis Vision F5 using infrared structured-light (SL) and a laser scanner based on the phase shift (PS) technology, the Z+F Imager 5010. The results show that future phases need improvement in data acquisition. Mainly the data obtained with the hand held scanner shows many lacunae. This article presents the observations during data processing on the basis of one sculpture, "Escultura 23". In conclusion, this first phase showed where to improve for the succeeding ones, for instance the detail of the meshes need to be increased if the models are to be used for detailed conservation and preservation purposes.


2021 ◽  
Vol 15 (3) ◽  
pp. 301-312
Author(s):  
Nobuo Kochi ◽  
Sachiko Isobe ◽  
Atsushi Hayashi ◽  
Kunihiro Kodama ◽  
Takanari Tanabata ◽  
...  

Digital image phenotyping has become popular in plant research. Plants are complex in shape, and occlusion can often occur. Three-dimensional (3D) data are expected to measure the morphological traits of plants with higher accuracy. Plants have organs with flat and/or narrow shapes and similar component structures are repeated. Therefore, it is difficult to construct an accurate 3D model by applying methods developed for industrial materials and architecture. Here, we review noncontact and all-around 3D modeling and configuration of camera systems to measure the morphological traits of plants in terms of system composition, accuracy, cost, and usability. Typical noncontact 3D measurement methods can be roughly classified into active and passive methods. We describe their advantages and disadvantages. Structure-from-motion/multi-view stereo (SfM/MVS), a passive method, is the most frequently used measurement method for plants. It is described in terms of “forward intersection” and “backward resection.” We recently developed a novel SfM/MVS approach by mixing the forward and backward methods, and we provide a brief overview of our approach in this paper. While various fields are adopting 3D model construction, nonexpert users struggle to use them and end up selecting inadequate methods, which lead to model failure. We hope that this review will help users who are considering starting to construct and measure 3D models.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii461-iii461
Author(s):  
Andrea Carai ◽  
Angela Mastronuzzi ◽  
Giovanna Stefania Colafati ◽  
Paul Voicu ◽  
Nicola Onorini ◽  
...  

Abstract Tridimensional (3D) rendering of volumetric neuroimaging is increasingly been used to assist surgical management of brain tumors. New technologies allowing immersive virtual reality (VR) visualization of obtained models offer the opportunity to appreciate neuroanatomical details and spatial relationship between the tumor and normal neuroanatomical structures to a level never seen before. We present our preliminary experience with the Surgical Theatre, a commercially available 3D VR system, in 60 consecutive neurosurgical oncology cases. 3D models were developed from volumetric CT scans and MR standard and advanced sequences. The system allows the loading of 6 different layers at the same time, with the possibility to modulate opacity and threshold in real time. Use of the 3D VR was used during preoperative planning allowing a better definition of surgical strategy. A tailored craniotomy and brain dissection can be simulated in advanced and precisely performed in the OR, connecting the system to intraoperative neuronavigation. Smaller blood vessels are generally not included in the 3D rendering, however, real-time intraoperative threshold modulation of the 3D model assisted in their identification improving surgical confidence and safety during the procedure. VR was also used offline, both before and after surgery, in the setting of case discussion within the neurosurgical team and during MDT discussion. Finally, 3D VR was used during informed consent, improving communication with families and young patients. 3D VR allows to tailor surgical strategies to the single patient, contributing to procedural safety and efficacy and to the global improvement of neurosurgical oncology care.


Sign in / Sign up

Export Citation Format

Share Document