scholarly journals Paracosm: A Test Framework for Autonomous Driving Simulations

Author(s):  
Rupak Majumdar ◽  
Aman Mathur ◽  
Marcus Pirron ◽  
Laura Stegner ◽  
Damien Zufferey

AbstractSystematic testing of autonomous vehicles operating in complex real-world scenarios is a difficult and expensive problem. We present Paracosm, a framework for writing systematic test scenarios for autonomous driving simulations. Paracosm allows users to programmatically describe complex driving situations with specific features, e.g., road layouts and environmental conditions, as well as reactive temporal behaviors of other cars and pedestrians. A systematic exploration of the state space, both for visual features and for reactive interactions with the environment is made possible. We define a notion of test coverage for parameter configurations based on combinatorial testing and low dispersion sequences. Using fuzzing on parameter configurations, our automatic test generator can maximize coverage of various behaviors and find problematic cases. Through empirical evaluations, we demonstrate the capabilities of Paracosm in programmatically modeling parameterized test environments, and in finding problematic scenarios.

Author(s):  
Heungseok Chae ◽  
Yonghwan Jeong ◽  
Hojun Lee ◽  
Jongcherl Park ◽  
Kyongsu Yi

This article describes the design, implementation, and evaluation of an active lane change control algorithm for autonomous vehicles with human factor considerations. Lane changes need to be performed considering both driver acceptance and safety with surrounding vehicles. Therefore, autonomous driving systems need to be designed based on an analysis of human driving behavior. In this article, manual driving characteristics are investigated using real-world driving test data. In lane change situations, interactions with surrounding vehicles were mainly investigated. And safety indices were developed with kinematic analysis. A safety indices–based lane change decision and control algorithm has been developed. In order to improve safety, stochastic predictions of both the ego vehicle and surrounding vehicles have been conducted with consideration of sensor noise and model uncertainties. The desired driving mode is decided to cope with all lane changes on highway. To obtain desired reference and constraints, motion planning for lane changes has been designed taking stochastic prediction-based safety indices into account. A stochastic model predictive control with constraints has been adopted to determine vehicle control inputs: the steering angle and the longitudinal acceleration. The proposed active lane change algorithm has been successfully implemented on an autonomous vehicle and evaluated via real-world driving tests. Safe and comfortable lane changes in high-speed driving on highways have been demonstrated using our autonomous test vehicle.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 694
Author(s):  
Mingyun Wen ◽  
Jisun Park ◽  
Yunsick Sung ◽  
Yong Woon Park ◽  
Kyungeun Cho

Recently, virtual environment-based techniques to train sensor-based autonomous driving models have been widely employed due to their efficiency. However, a simulated virtual environment is required to be highly similar to its real-world counterpart to ensure the applicability of such models to actual autonomous vehicles. Though advances in hardware and three-dimensional graphics engine technology have enabled the creation of realistic virtual driving environments, the myriad of scenarios occurring in the real world can only be simulated up to a limited extent. In this study, a scenario simulation and modeling framework that simulates the behavior of objects that may be encountered while driving is proposed to address this problem. This framework maximizes the number of scenarios, their types, and the driving experience in a virtual environment. Furthermore, a simulator was implemented and employed to evaluate the performance of the proposed framework.


Author(s):  
Jiayuan Dong ◽  
Emily Lawson ◽  
Jack Olsen ◽  
Myounghoon Jeon

Driving agents can provide an effective solution to improve drivers’ trust in and to manage interactions with autonomous vehicles. Research has focused on voice-agents, while few have explored robot-agents or the comparison between the two. The present study tested two variables - voice gender and agent embodiment, using conversational scripts. Twenty participants experienced autonomous driving using the simulator for four agent conditions and filled out subjective questionnaires for their perception of each agent. Results showed that the participants perceived the voice only female agent as more likeable, more comfortable, and more competent than other conditions. Their final preference ranking also favored this agent over the others. Interestingly, eye-tracking data showed that embodied agents did not add more visual distractions than the voice only agents. The results are discussed with the traditional gender stereotype, uncanny valley, and participants’ gender. This study can contribute to the design of in-vehicle agents in the autonomous vehicles and future studies are planned to further identify the underlying mechanisms of user perception on different agents.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3783
Author(s):  
Sumbal Malik ◽  
Manzoor Ahmed Khan ◽  
Hesham El-Sayed

Sooner than expected, roads will be populated with a plethora of connected and autonomous vehicles serving diverse mobility needs. Rather than being stand-alone, vehicles will be required to cooperate and coordinate with each other, referred to as cooperative driving executing the mobility tasks properly. Cooperative driving leverages Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication technologies aiming to carry out cooperative functionalities: (i) cooperative sensing and (ii) cooperative maneuvering. To better equip the readers with background knowledge on the topic, we firstly provide the detailed taxonomy section describing the underlying concepts and various aspects of cooperation in cooperative driving. In this survey, we review the current solution approaches in cooperation for autonomous vehicles, based on various cooperative driving applications, i.e., smart car parking, lane change and merge, intersection management, and platooning. The role and functionality of such cooperation become more crucial in platooning use-cases, which is why we also focus on providing more details of platooning use-cases and focus on one of the challenges, electing a leader in high-level platooning. Following, we highlight a crucial range of research gaps and open challenges that need to be addressed before cooperative autonomous vehicles hit the roads. We believe that this survey will assist the researchers in better understanding vehicular cooperation, its various scenarios, solution approaches, and challenges.


Author(s):  
Gaojian Huang ◽  
Christine Petersen ◽  
Brandon J. Pitts

Semi-autonomous vehicles still require drivers to occasionally resume manual control. However, drivers of these vehicles may have different mental states. For example, drivers may be engaged in non-driving related tasks or may exhibit mind wandering behavior. Also, monitoring monotonous driving environments can result in passive fatigue. Given the potential for different types of mental states to negatively affect takeover performance, it will be critical to highlight how mental states affect semi-autonomous takeover. A systematic review was conducted to synthesize the literature on mental states (such as distraction, fatigue, emotion) and takeover performance. This review focuses specifically on five fatigue studies. Overall, studies were too few to observe consistent findings, but some suggest that response times to takeover alerts and post-takeover performance may be affected by fatigue. Ultimately, this review may help researchers improve and develop real-time mental states monitoring systems for a wide range of application domains.


2021 ◽  
Vol 11 (13) ◽  
pp. 6016
Author(s):  
Jinsoo Kim ◽  
Jeongho Cho

For autonomous vehicles, it is critical to be aware of the driving environment to avoid collisions and drive safely. The recent evolution of convolutional neural networks has contributed significantly to accelerating the development of object detection techniques that enable autonomous vehicles to handle rapid changes in various driving environments. However, collisions in an autonomous driving environment can still occur due to undetected obstacles and various perception problems, particularly occlusion. Thus, we propose a robust object detection algorithm for environments in which objects are truncated or occluded by employing RGB image and light detection and ranging (LiDAR) bird’s eye view (BEV) representations. This structure combines independent detection results obtained in parallel through “you only look once” networks using an RGB image and a height map converted from the BEV representations of LiDAR’s point cloud data (PCD). The region proposal of an object is determined via non-maximum suppression, which suppresses the bounding boxes of adjacent regions. A performance evaluation of the proposed scheme was performed using the KITTI vision benchmark suite dataset. The results demonstrate the detection accuracy in the case of integration of PCD BEV representations is superior to when only an RGB camera is used. In addition, robustness is improved by significantly enhancing detection accuracy even when the target objects are partially occluded when viewed from the front, which demonstrates that the proposed algorithm outperforms the conventional RGB-based model.


Author(s):  
Walter Morales Alvarez ◽  
Francisco Miguel Moreno ◽  
Oscar Sipele ◽  
Nikita Smirnov ◽  
Cristina Olaverri-Monreal

2021 ◽  
pp. 1-82
Author(s):  
Joseph Cesario

Abstract This article questions the widespread use of experimental social psychology to understand real-world group disparities. Standard experimental practice is to design studies in which participants make judgments of targets who vary only on the social categories to which they belong. This is typically done under simplified decision landscapes and with untrained decision makers. For example, to understand racial disparities in police shootings, researchers show pictures of armed and unarmed Black and White men to undergraduates and have them press "shoot" and "don't shoot" buttons. Having demonstrated categorical bias under these conditions, researchers then use such findings to claim that real-world disparities are also due to decision-maker bias. I describe three flaws inherent in this approach, flaws which undermine any direct contribution of experimental studies to explaining group disparities. First, the decision landscapes used in experimental studies lack crucial components present in actual decisions (Missing Information Flaw). Second, categorical effects in experimental studies are not interpreted in light of other effects on outcomes, including behavioral differences across groups (Missing Forces Flaw). Third, there is no systematic testing of whether the contingencies required to produce experimental effects are present in real-world decisions (Missing Contingencies Flaw). I apply this analysis to three research topics to illustrate the scope of the problem. I discuss how this research tradition has skewed our understanding of the human mind within and beyond the discipline and how results from experimental studies of bias are generally misunderstood. I conclude by arguing that the current research tradition should be abandoned.


2020 ◽  
Vol 13 (1) ◽  
pp. 89
Author(s):  
Manuel Carranza-García ◽  
Jesús Torres-Mateo ◽  
Pedro Lara-Benítez ◽  
Jorge García-Gutiérrez

Object detection using remote sensing data is a key task of the perception systems of self-driving vehicles. While many generic deep learning architectures have been proposed for this problem, there is little guidance on their suitability when using them in a particular scenario such as autonomous driving. In this work, we aim to assess the performance of existing 2D detection systems on a multi-class problem (vehicles, pedestrians, and cyclists) with images obtained from the on-board camera sensors of a car. We evaluate several one-stage (RetinaNet, FCOS, and YOLOv3) and two-stage (Faster R-CNN) deep learning meta-architectures under different image resolutions and feature extractors (ResNet, ResNeXt, Res2Net, DarkNet, and MobileNet). These models are trained using transfer learning and compared in terms of both precision and efficiency, with special attention to the real-time requirements of this context. For the experimental study, we use the Waymo Open Dataset, which is the largest existing benchmark. Despite the rising popularity of one-stage detectors, our findings show that two-stage detectors still provide the most robust performance. Faster R-CNN models outperform one-stage detectors in accuracy, being also more reliable in the detection of minority classes. Faster R-CNN Res2Net-101 achieves the best speed/accuracy tradeoff but needs lower resolution images to reach real-time speed. Furthermore, the anchor-free FCOS detector is a slightly faster alternative to RetinaNet, with similar precision and lower memory usage.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Hannes Weinreuter ◽  
Balázs Szigeti ◽  
Nadine-Rebecca Strelau ◽  
Barbara Deml ◽  
Michael Heizmann

Abstract Autonomous driving is a promising technology to, among many aspects, improve road safety. There are however several scenarios that are challenging for autonomous vehicles. One of these are unsignalized junctions. There exist scenarios in which there is no clear regulation as to is allowed to drive first. Instead, communication and cooperation are necessary to solve such scenarios. This is especially challenging when interacting with human drivers. In this work we focus on unsignalized T-intersections. For that scenario we propose a discrete event system (DES) that is able to solve the cooperation with human drivers at a T-intersection with limited visibility and no direct communication. The algorithm is validated in a simulation environment, and the parameters for the algorithm are based on an analysis of typical human behavior at intersections using real-world data.


Sign in / Sign up

Export Citation Format

Share Document