Pharmaceutical Applications of Various Natural Gums and Mucilages

Author(s):  
Vipul Prajapati ◽  
Sonal Desai ◽  
Shivani Gandhi ◽  
Salona Roy
2019 ◽  
Vol 9 (01) ◽  
pp. 27-33
Author(s):  
Naveen Kumar ◽  
Sonia Pahuja ◽  
Ranjit Sharma

Humans have taken advantage of the adaptability of polymers for centuries in the form of resins, gums tars, and oils. However, it was not until the industrial revolution that the modern polymer industry began to develop. Polymers represent an important constituent of pharmaceutical dosage forms. Polymers have played vital roles in the formulation of pharmaceutical products. Polymers have been used as a major tool to manage the drug release rate from the formulations. Synthetic and natural-based polymers have found their way into the biomedical and pharmaceutical industries. Synthetic and Natural polymers can be produced with a broad range of strength, heat resistance, density, stiffness and even price. By constant research into the science and applications of polymers, they are playing an ever-increasing role in society. Diverse applications of polymers in the present pharmaceutical field are for controlled drug release. Based on solubility pharmaceutical polymers can be classified as water-soluble and water-insoluble. In general, the desirable polymer properties in pharmaceutical applications are film forming, adhesion, gelling, thickening, pH-dependent solubility and taste masking. General pharmaceutical applications of polymers in various pharmaceutical formulations are also discussed


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 618
Author(s):  
Layla Shafei ◽  
Puja Adhikari ◽  
Wai-Yim Ching

Clay mineral materials have attracted attention due to their many properties and applications. The applications of clay minerals are closely linked to their structure and composition. In this paper, we studied the electronic structure properties of kaolinite, muscovite, and montmorillonite crystals, which are classified as clay minerals, by using DFT-based ab initio packages VASP and the OLCAO. The aim of this work is to have a deep understanding of clay mineral materials, including electronic structure, bond strength, mechanical properties, and optical properties. It is worth mentioning that understanding these properties may help continually result in new and innovative clay products in several applications, such as in pharmaceutical applications using kaolinite for their potential in cancer treatment, muscovite used as insulators in electrical appliances, and engineering applications that use montmorillonite as a sealant. In addition, our results show that the role played by hydrogen bonds in O-H bonds has an impact on the hydration in these crystals. Based on calculated total bond order density, it is concluded that kaolinite is slightly more cohesive than montmorillonite, which is consistent with the calculated mechanical properties.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pranay Asai ◽  
Palash Panja ◽  
Raul Velasco ◽  
Milind Deo

AbstractThe pressure-driven flow of long-chain hydrocarbons in nanosized pores is important in energy, environmental, biological, and pharmaceutical applications. This paper examines the flow of hexane, heptane, and decane in carbon nanotubes (CNTs) of pore diameters 1–8 nm using molecular dynamic simulations. Enhancement of water flow in CNTs in comparison to rates predicted by continuum models has been well established in the literature. Our work was intended to observe if molecular dynamic simulations of hydrocarbon flow in CNTs produced similar enhancements. We used the OPLS-AA force field to simulate the hydrocarbons and the CNTs. Our simulations predicted the bulk densities of the hydrocarbons to be within 3% of the literature values. Molecular sizes and shapes of the hydrocarbon molecules compared to the pore size create interesting density patterns for smaller sized CNTs. We observed moderate flow enhancements for all the hydrocarbons (1–100) flowing through small-sized CNTs. For very small CNTs the larger hydrocarbons were forced to flow in a cork-screw fashion. As a result of this flow orientation, the larger molecules flowed as effectively (similar enhancements) as the smaller hydrocarbons.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sopan Nangare ◽  
Yogini Vispute ◽  
Rahul Tade ◽  
Shailesh Dugam ◽  
Pravin Patil

Abstract Background Citric acid (CA) is a universal plant and animal-metabolism intermediate. It is a commodity chemical processed and widely used around the world as an excellent pharmaceutical excipient. Notably, CA is offering assorted significant properties viz. biodegradability, biocompatibility, hydrophilicity, safety, etc. Therefore, CA is broadly employed in many sectors including foodstuffs, beverages, pharmaceuticals, nutraceuticals, and cosmetics as a flavoring agent, sequestering agent, buffering agent, etc. From the beginning, CA is a regular ingredient for cosmetic pH-adjustment and as a metallic ion chelator in antioxidant systems. In addition, it is used to improve the taste of pharmaceuticals such as syrups, solutions, elixirs, etc. Furthermore, free CA is also employed as an acidulant in mild astringent preparations. Main text In essence, it is estimated that the functionality present in CA provides excellent assets in pharmaceutical applications such as cross-linking, release-modifying capacity, interaction with molecules, capping and coating agent, branched polymer nanoconjugates, gas generating agent, etc. Mainly, the center of attention of the review is to deliver an impression of the CA-based pharmaceutical applications. Conclusion In conclusion, CA is reconnoitered for multiple novels pharmaceutical and biomedical/applications including as a green crosslinker, release modifier, monomer/branched polymer, capping and coating agent, novel disintegrant, absorption enhancer, etc. In the future, CA can be utilized as an excellent substitute for pharmaceutical and biomedical applications. Graphical abstract


ChemInform ◽  
2010 ◽  
Vol 41 (25) ◽  
pp. no-no
Author(s):  
F. Fulop ◽  
I. Szatmari ◽  
E. Vamos ◽  
D. Zadori ◽  
J. Toldi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document