An Overview of Security and Privacy in Smart Cities

Author(s):  
Navod Neranjan Thilakarathne ◽  
W. D. Madhuka Priyashan
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Daniel Ayala-Ruiz ◽  
Alejandro Castillo Atoche ◽  
Erica Ruiz-Ibarra ◽  
Edith Osorio de la Rosa ◽  
Javier Vázquez Castillo

Long power wide area networks (LPWAN) systems play an important role in monitoring environmental conditions for smart cities applications. With the development of Internet of Things (IoT), wireless sensor networks (WSN), and energy harvesting devices, ultra-low power sensor nodes (SNs) are able to collect and monitor the information for environmental protection, urban planning, and risk prevention. This paper presents a WSN of self-powered IoT SNs energetically autonomous using Plant Microbial Fuel Cells (PMFCs). An energy harvesting device has been adapted with the PMFC to enable a batteryless operation of the SN providing power supply to the sensor network. The low-power communication feature of the SN network is used to monitor the environmental data with a dynamic power management strategy successfully designed for the PMFC-based LoRa sensor node. Environmental data of ozone (O3) and carbon dioxide (CO2) are monitored in real time through a web application providing IoT cloud services with security and privacy protocols.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Irfan Muhammad ◽  
Hirley Alves ◽  
Onel Alcaraz López ◽  
Matti Latva-aho

The Internet of Things (IoT) facilitates physical things to detect, interact, and execute activities on-demand, enabling a variety of applications such as smart homes and smart cities. However, it also creates many potential risks related to data security and privacy vulnerabilities on the physical layer of cloud-based Internet of Things (IoT) networks. These can include different types of physical attacks such as interference, eavesdropping, and jamming. As a result, quality-of-service (QoS) provisioning gets difficult for cloud-based IoT. This paper investigates the statistical QoS provisioning of a four-node cloud-based IoT network under security, reliability, and latency constraints by relying on the effective capacity model to offer enhanced QoS for IoT networks. Alice and Bob are legitimate nodes trying to communicate with secrecy in the considered scenario, while an eavesdropper Eve overhears their communication. Meanwhile, a friendly jammer, which emits artificial noise, is used to degrade the wiretap channel. By taking advantage of their multiple antennas, Alice implements transmit antenna selection, while Bob and Eve perform maximum-ratio combining. We further assume that Bob decodes the artificial noise perfectly and thus removes its contribution by implementing perfect successive interference cancellation. A closed-form expression for an alternative formulation of the outage probability, conditioned upon the successful transmission of a message, is obtained by considering adaptive rate allocation in an ON-OFF transmission. The data arriving at Alice’s buffer are modeled by considering four different Markov sources to describe different IoT traffic patterns. Then, the problem of secure throughput maximization is addressed through particle swarm optimization by considering the security, latency, and reliability constraints. Our results evidence the considerable improvements on the delay violation probability by increasing the number of antennas at Bob under strict buffer constraints.


2021 ◽  
Vol 2021 ◽  
pp. 1-2
Author(s):  
Chalee Vorakulpipat ◽  
Ryan K. L. Ko ◽  
Qi Li ◽  
Ahmed Meddahi


Kybernetes ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhihao Yu ◽  
Liang Song ◽  
Linhua Jiang ◽  
Omid Khold Sharafi

Purpose Security is the most important issue in Internet of Things (IoT)-based smart cities and blockchain (BC). So, the present paper aims to detect and organize the literature regarding security in the IoT-based smart cities and BC context. It also proposes an agenda for future research. Therefore, the authors did a statistical review of security in IoT and BC in smart cities. The present investigation aims to determine the principal challenges and disturbances in IoT because of the BC adoption, the central BC applications in IoT-based smart cities and the BC future in IoT-based smart cities. Design/methodology/approach IoT) has a notable influence on modernizing and transforming the society and industry for knowledge digitizing. Therefore, it may be perceived and operated in real time. The IoT is undergoing exponential development in industry and investigation. Still, it contains some security and privacy susceptibilities. Naturally, the research community pays attention to the security and privacy of the IoT. Also, the academic community has put a significant focus on BC as a new security project. In the present paper, the significant mechanisms and investigations in BC ground have been checked out systematically because of the significance of security in the IoT and BC in smart cities. Electronic databases were used to search for keywords. Totally, based on different filters, 131 papers have been gained, and 17 related articles have been obtained and analyzed. The security mechanisms of BC in IoT-based smart cities have been ranked into three main categories as follows, smart health care, smart home and smart agriculture. Findings The findings showed that BC’s distinctive technical aspects might impressively find a solution for privacy and security problems encountering the IoT-based smart cities development. They also supply distributed storage, transparency, trust and other IoT support to form a valid, impressive and secure distributed IoT network and provide a beneficial guarantee for IoT-based smart city users’ security and privacy. Research limitations/implications The present investigation aims to be comprehensive, but some restrictions were also observed. Owing to the use of some filters for selecting the original papers, some complete works may be excluded. Besides, inspecting the total investigations on the security topic in BC and the IoT-based smart cities is infeasible. Albeit, the authors attempt to introduce a complete inspection of the security challenges in BC and the IoT-based smart cities. BC includes significant progress and innovation in the IoT-based smart cities’ security domain as new technology. Still, it contains some deficiencies as well. Investigators actively encounter the challenges and bring up persistent innovation and inspection of related technologies in the vision of the issues available in diverse application scenarios. Practical implications The use of BC technology in finding a solution for the security issues of the IoT-based smart cities is a research hotspot. There is numerable literature with data and theoretical support despite the suggestion of numerous relevant opinions. Therefore, this paper offers insights into how findings may guide practitioners and researchers in developing appropriate security systems dependent upon the features of IoT-based smart city systems and BC. This paper may also stimulate further investigation on the challenge of security in BC and IoT-based smart cities. The outcomes will be of great value for scholars and may supply sights into future investigation grounds in the present field. Originality/value As the authors state according to their knowledge, it is the first work using security challenges on BC and IoT-based smart cities. The literature review shows that few papers discuss how solving security issues in the IoT-based smart cities can benefit from the BC. The investigation suggests a literature review on the topic, recommending some thoughts on using security tools in the IoT-based smart cities. The present investigation helps organizations plan to integrate IoT and BC to detect the areas to focus. It also assists in better resource planning for the successful execution of smart technologies in their supply chains.


Author(s):  
Amtul Waheed ◽  
Jana Shafi

Smart cities are established on some smart components such as smart governances, smart economy, science and technology, smart politics, smart transportation, and smart life. Each and every smart object is interconnected through the internet, challenging the security and privacy of citizen's sensitive information. A secure framework for smart cities is the only solution for better and smart living. This can be achieved through IoT infrastructure and cloud computing. The combination of IoT and Cloud also increases the storage capacity and computational power and make services pervasive, cost-effective, and accessed from anywhere and any device. This chapter will discuss security issues and challenges of smart city along with cyber security framework and architecture of smart cities for smart infrastructures and smart applications. It also presents a general study about security mechanism for smart city applications and security protection methodology using IOT service to stand against cyber-attacks.


Author(s):  
Ismail Butun ◽  
Patrik Österberg

Interfacing the smart cities with cyber-physical systems (CPSs) improves cyber infrastructures while introducing security vulnerabilities that may lead to severe problems such as system failure, privacy violation, and/or issues related to data integrity if security and privacy are not addressed properly. In order for the CPSs of smart cities to be designed with proactive intelligence against such vulnerabilities, anomaly detection approaches need to be employed. This chapter will provide a brief overview of the security vulnerabilities in CPSs of smart cities. Following a thorough discussion on the applicability of conventional anomaly detection schemes in CPSs of smart cities, possible adoption of distributed anomaly detection systems by CPSs of smart cities will be discussed along with a comprehensive survey of the state of the art. The chapter will discuss challenges in tailoring appropriate anomaly detection schemes for CPSs of smart cities and provide insights into future directions for the researchers working in this field.


Author(s):  
Yessenia Berenice Llive ◽  
Norbert Varga ◽  
László Bokor

In the near future with the innovative services and solutions being currently tested and deployed for cars, homes, offices, transport systems, smart cities, etc., the user connectivity will considerably change. It means that smart devices will be connected to the internet and produce a big impact on the internet traffic, increasing the service demand generated by devices and sensors. However most of these devices are vulnerable to attacks. Hence, the security and privacy become a crucial feature to be included in towards its appropriate deployment. Interconnected, cooperative, service-oriented devices and their related hardware/software solutions will contain sensitive data making such systems susceptible to attacks and leakage of information. Therefore, robust secure communication infrastructures must be established to aid suitable deployment. This chapter is a state-of-the-art assessment of US and EU C-ITS security solutions.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6131
Author(s):  
Mamun Abu-Tair ◽  
Soufiene Djahel ◽  
Philip Perry ◽  
Bryan Scotney ◽  
Unsub Zia ◽  
...  

Internet of Things (IoT) technology is increasingly pervasive in all aspects of our life and its usage is anticipated to significantly increase in future Smart Cities to support their myriad of revolutionary applications. This paper introduces a new architecture that can support several IoT-enabled smart home use cases, with a specified level of security and privacy preservation. The security threats that may target such an architecture are highlighted along with the cryptographic algorithms that can prevent them. An experimental study is performed to provide more insights about the suitability of several lightweight cryptographic algorithms for use in securing the constrained IoT devices used in the proposed architecture. The obtained results showed that many modern lightweight symmetric cryptography algorithms, as CLEFIA and TRIVIUM, are optimized for hardware implementations and can consume up to 10 times more energy than the legacy techniques when they are implemented in software. Moreover, the experiments results highlight that CLEFIA significantly outperforms TRIVIUM under all of the investigated test cases, and the latter performs 100 times worse than the legacy cryptographic algorithms tested.


Author(s):  
Sheshadri Chatterjee

Development of cities brings in overall economic growth of the country. As a result, cities are taking new shape with modern facilities to ensure development. In this perspective, Government of India (GOI) has announced to create 100 Smart Cities across different locations in India. In these Smart Cities, modern infrastructure would be created with introduction of modern 5G network systems. This network system is expected to bring in considerable improvements in the Smart Cities if the security and privacy issues involved in this system can be addressed. This chapter has taken an attempt to identify the critical success factors (CSFs) instrumental to improve this network system within the acceptable level of security and privacy vulnerabilities in Smart Cities of India. To identify the CSFs, different standard methods including questionnaire-oriented survey, brainstorming have been adopted. Interpretive structural modelling (ISM) methodology has been used to find out inter-relationships among the CSFs along with identification of driving forces.


Sign in / Sign up

Export Citation Format

Share Document