Planar Defects: Crystal Interfaces

Author(s):  
Lawrence E. Murr
Author(s):  
C. W. Allen ◽  
D. L. Kuruzar

The rare earth/transition element intermetallics R2T17 are essentially topologically close packed phases for which layer structure models have already been presented. Many of these compounds are known to undergo allotropic transformation of the type at elevated temperatures. It is not unexpected that shear transformation mechanisms are involved in view of the layering character of the structures. The transformations are evidently quite sluggish, illustrated in furnace cooled Dy2Co17 by the fact that only rarely has the low temperature rhombohedral form been seen. The more usual structures observed so far in furnace cooled alloys include 4H and 6H in Dy2Co17 (Figs. 1 and 2) . In any event it is quite clear that the general microstructure is very complicated as a consequence of the allotropy, illustrated in Fig. 3. Numerous planar defects in the layer plane orientation are evident as are non-layer plane defects inherited from a high temperature structure.


Author(s):  
S. McKernan ◽  
C. B. Carter ◽  
D. Bour ◽  
J. R. Shealy

The growth of ternary III-V semiconductors by organo-metallic vapor phase epitaxy (OMVPE) is widely practiced. It has been generally assumed that the resulting structure is the same as that of the corresponding binary semiconductors, but with the two different cation or anion species randomly distributed on their appropriate sublattice sites. Recently several different ternary semiconductors including AlxGa1-xAs, Gaxln-1-xAs and Gaxln1-xP1-6 have been observed in ordered states. A common feature of these ordered compounds is that they contain a relatively high density of defects. This is evident in electron diffraction patterns from these materials where streaks, which are typically parallel to the growth direction, are associated with the extra reflections arising from the ordering. However, where the (Ga,ln)P epilayer is reasonably well ordered the streaking is extremely faint, and the intensity of the ordered spot at 1/2(111) is much greater than that at 1/2(111). In these cases it is possible to image relatively clearly many of the defects found in the ordered structure.


Author(s):  
Thao A. Nguyen

It is well known that the large deviations from stoichiometry in iron sulfide compounds, Fe1-xS (0≤x≤0.125), are accommodated by iron vacancies which order and form superstructures at low temperatures. Although the ordering of the iron vacancies has been well established, the modes of vacancy ordering, hence superstructures, as a function of composition and temperature are still the subject of much controversy. This investigation gives direct evidence from many-beam lattice images of Fe1-xS that the 4C superstructure transforms into the 3C superstructure (Fig. 1) rather than the MC phase as previously suggested. Also observed are an intrinsic stacking fault in the sulfur sublattice and two different types of vacancy-ordering antiphase boundaries. Evidence from selective area optical diffractograms suggests that these planar defects complicate the diffraction pattern greatly.


Author(s):  
Y. Y. Wang ◽  
H. Zhang ◽  
V. P. Dravid ◽  
H. Zhang ◽  
L. D. Marks ◽  
...  

Azuma et al. observed planar defects in a high pressure synthesized infinitelayer compound (i.e. ACuO2 (A=cation)), which exhibits superconductivity at ~110 K. It was proposed that the defects are cation deficient and that the superconductivity in this material is related to the planar defects. In this report, we present quantitative analysis of the planar defects utilizing nanometer probe xray microanalysis, high resolution electron microscopy, and image simulation to determine the chemical composition and atomic structure of the planar defects. We propose an atomic structure model for the planar defects.Infinite-layer samples with the nominal chemical formula, (Sr1-xCax)yCuO2 (x=0.3; y=0.9,1.0,1.1), were prepared using solid state synthesized low pressure forms of (Sr1-xCax)CuO2 with additions of CuO or (Sr1-xCax)2CuO3, followed by a high pressure treatment.Quantitative x-ray microanalysis, with a 1 nm probe, was performed using a cold field emission gun TEM (Hitachi HF-2000) equipped with an Oxford Pentafet thin-window x-ray detector. The probe was positioned on the planar defects, which has a 0.74 nm width, and x-ray emission spectra from the defects were compared with those obtained from vicinity regions.


Author(s):  
Feng Tsai ◽  
J. M. Cowley

Reflection electron microscopy (REM) has been used to study surface defects such as surface steps, dislocations emerging on crystal surfaces, and surface reconstructions. However, only a few REM studies have been reported about the planar defects emerging on surfaces. The interaction of planar defects with surfaces may be of considerable practical importance but so far there seems to be only one relatively simple theoretical treatment of the REM contrast and very little experimental evidence to support its predications. Recently, intersections of both 90° and 180° ferroelectric domain boundaries with BaTiO3 crystal surfaces have been investigated by Tsai and Cowley with REM.The REM observations of several planar defects, such as stacking faults and domain boundaries have been continued by the present authors. All REM observations are performed on a JEM-2000FX transmission electron microscope. The sample preparations may be seen somewhere else. In REM, the incident electron beam strikes the surface of a crystal with a small glancing angle.


Author(s):  
J. L. Batstone ◽  
D.A. Smith

Recrystallization of amorphous NiSi2 involves nucleation and growth processes which can be studied dynamically in the electron microscope. Previous studies have shown thatCoSi2 recrystallises by nucleating spherical caps which then grow with a constant radial velocity. Coalescence results in the formation of hyperbolic grain boundaries. Nucleation of the isostructural NiSi2 results in small, approximately round grains with very rough amorphous/crystal interfaces. In this paper we show that the morphology of the rccrystallizcd film is dramatically affected by variations in the stoichiometry of the amorphous film.Thin films of NiSi2 were prepared by c-bcam deposition of Ni and Si onto Si3N4, windows supported by Si substrates at room temperature. The base pressure prior to deposition was 6 × 107 torr. In order to investigate the effect of stoichiomctry on the recrystallization process, the Ni/Si ratio was varied in the range NiSi1.8-2.4. The composition of the amorphous films was determined by Rutherford Backscattering.


2021 ◽  
Vol 118 (24) ◽  
pp. 243301
Author(s):  
Yusuke Morino ◽  
Yasuyuki Yokota ◽  
Ken-ichi Bando ◽  
Hisaya Hara ◽  
Akihito Imanishi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document