Well Ordered Lattice Structures in Crystals

Author(s):  
Rudolf P. Huebener
Keyword(s):  
Author(s):  
Kazumichi Ogura ◽  
Michael M. Kersker

Backscattered electron (BE) images of GaAs/AlGaAs super lattice structures were observed with an ultra high resolution (UHR) SEM JSM-890 with an ultra high sensitivity BE detector. Three different types of super lattice structures of GaAs/AlGaAs were examined. Each GaAs/AlGaAs wafer was cleaved by a razor after it was heated for approximately 1 minute and its crosssectional plane was observed.First, a multi-layer structure of GaAs (100nm)/AlGaAs (lOOnm) where A1 content was successively changed from 0.4 to 0.03 was observed. Figures 1 (a) and (b) are BE images taken at an accelerating voltage of 15kV with an electron beam current of 20pA. Figure 1 (c) is a sketch of this multi-layer structure corresponding to the BE images. The various layers are clearly observed. The differences in A1 content between A1 0.35 Ga 0.65 As, A1 0.4 Ga 0.6 As, and A1 0.31 Ga 0.69 As were clearly observed in the contrast of the BE image.


Author(s):  
C. K. Wu

The precipitation phenomenon in Al-Zn-Mg alloy is quite interesting and complicated and can be described in the following categories:(i) heterogeneous nucleation at grain boundaries;(ii) precipitate-free-zones (PFZ) adjacent to the grain boundaries;(iii) homogeneous nucleation of snherical G.P. zones, n' and n phases inside the grains. The spherical G.P. zones are coherent with the matrix, whereas the n' and n phases are incoherent. It is noticed that n' and n phases exhibit plate-like morpholoay with several orientation relationship with the matrix. The high resolution lattice imaging techninue of TEM is then applied to study precipitates in this alloy system. It reveals the characteristics of lattice structures of each phase and the orientation relationships with the matrix.


1992 ◽  
Author(s):  
Michele Basseville ◽  
Albert Benveniste ◽  
Alan S. Willsky

2021 ◽  
pp. 109746
Author(s):  
Xiaoyang Wang ◽  
Lei Zhu ◽  
Liao Sun ◽  
Nan Li

Author(s):  
Jacopo Fiocchi ◽  
Chiara Bregoli ◽  
Giulio Gerosa ◽  
Ausonio Tuissi ◽  
Carlo Alberto Biffi

Author(s):  
M. Carraturo ◽  
G. Alaimo ◽  
S. Marconi ◽  
E. Negrello ◽  
E. Sgambitterra ◽  
...  

AbstractAdditive manufacturing (AM), and in particular selective laser melting (SLM) technology, allows to produce structural components made of lattice structures. These kinds of structures have received a lot of research attention over recent years due to their capacity to generate easy-to-manufacture and lightweight components with enhanced mechanical properties. Despite a large amount of work available in the literature, the prediction of the mechanical behavior of lattice structures is still an open issue for researchers. Numerical simulations can help to better understand the mechanical behavior of such a kind of structure without undergoing long and expensive experimental campaigns. In this work, we compare numerical and experimental results of a uniaxial tensile test for stainless steel 316L octet-truss lattice specimen. Numerical simulations are based on both the nominal as-designed geometry and the as-build geometry obtained through the analysis of µ-CT images. We find that the use of the as-build geometry is fundamental for an accurate prediction of the mechanical behavior of lattice structures.


Sign in / Sign up

Export Citation Format

Share Document