Investigation of Human Subjective Feelings for Different Surface Textures of Slipping Objects Based on the Analysis of Contact Conditions

Author(s):  
Tsuyoshi Arakawa ◽  
Akira Nakahara ◽  
Kiyotaka Yarimizu ◽  
Masato Takahashi ◽  
Michiko Ohkura ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Biswajit Mishra ◽  
Pratikkumar Manvar ◽  
Kaushik Choudhury ◽  
S. Karagadde ◽  
Atul Srivastava

AbstractWe report experiments on crystallization of highly undercooled forsterite melt droplets under atmospheric and sub-atmospheric pressure conditions. Experiments have been conducted under non-contact conditions using the principles of aero-dynamic levitation. Real time dynamics of solidification, along with the transient evolution of surface textures, have been recorded using high speed camera for three cooling rates. These images have been matched with the time-tagged temperature data to understand the effect of pressure conditions and cooling rates on the crystallization dynamics. Compared to normal pressure, relatively higher levels of undercooling could be achieved under sub-atmospheric conditions. Results showed a strong dependence of surface textures on pressure conditions. For any externally employed cooling rate, relatively small length scale morphological textures were observed under sub-atmospheric conditions, in comparison to those achieved under ambient conditions. The observed trends have been explained on the basis of influence of pressure conditions on recalescence phenomenon and the rate at which latent heat of crystallization gets dissipated from the volume of the molten droplet. Sub-atmospheric experiments have also been performed to reproduce one of the classical chondrule textures, namely the rim + dendrite double structure. Possible formation conditions of this double structure have been discussed vis-à-vis those reported in the limited literature. To the best of our knowledge, the reported study is one of the first attempts to reproduce chondrules-like textures from highly undercooled forsterite melt droplets under sub-atmospheric non-contact conditions.


Author(s):  
Eugene J. Amaral

Examination of sand grain surfaces from early Paleozoic sandstones by electron microscopy reveals a variety of secondary effects caused by rock-forming processes after final deposition of the sand. Detailed studies were conducted on both coarse (≥0.71mm) and fine (=0.25mm) fractions of St. Peter Sandstone, a widespread sand deposit underlying much of the U.S. Central Interior and used in the glass industry because of its remarkably high silica purity.The very friable sandstone was disaggregated and sieved to obtain the two size fractions, and then cleaned by boiling in HCl to remove any iron impurities and rinsed in distilled water. The sand grains were then partially embedded by sprinkling them onto a glass slide coated with a thin tacky layer of latex. Direct platinum shadowed carbon replicas were made of the exposed sand grain surfaces, and were separated by dissolution of the silica in HF acid.


2019 ◽  
Vol 14 (4) ◽  
pp. 424-429 ◽  
Author(s):  
Ying Zhang ◽  
Liangcai Zeng ◽  
Zhenpeng Wu ◽  
Xianzhong Ding ◽  
Kuisheng Chen

1986 ◽  
Vol 14 (1) ◽  
pp. 44-72 ◽  
Author(s):  
C. M. Mc C. Ettles

Abstract It is proposed that tire-pavement friction is controlled by thermal rather than by hysteresis and viscoelastic effects. A numerical model of heating effects in sliding is described in which the friction coefficient emerges as a dependent variable. The overall results of the model can be expressed in a closed form using Blok's flash temperature theory. This allows the factors controlling rubber friction to be recognized directly. The model can be applied in quantitative form to metal-polymer-ice contacts. Several examples of correlation are given. The difficulties of characterizing the contact conditions in tire-pavement friction reduce the model to qualitative form. Each of the governing parameters is examined in detail. The attainment of higher friction by small, discrete particles of aluminum filler is discussed.


2021 ◽  
pp. 104279
Author(s):  
Thomas van Rompay ◽  
Iris van Ooijen ◽  
Sara Groothedde ◽  
Daniel Saakes
Keyword(s):  

2021 ◽  
Vol 11 (9) ◽  
pp. 4039
Author(s):  
Yiran Niu ◽  
Lin Li ◽  
Yanwei Zhang ◽  
Shicai Yu ◽  
Jian Zhou

Contact breakage of particles makes a large difference in the strength of coarse-grained soils, and exploring the characteristics within the process of the breakage is of great significance. Ignoring the influence of particle shape, the micromechanism of two spherical particles breaking under normal–tangential contact conditions was investigated theoretically and experimentally. Through theoretical analysis, the breakage form, the shape and size of the conical core, and the relationship between the normal and tangential forces at crushing were predicted. Particle contact tests of two gypsum spheres were carried out, in which the breakage forms, features of the conical cores and the normal and tangential forces at crushing were recorded for comparison with the predicted values. The test results and the theoretical predictions showed good agreement. Both the analysis and test demonstrate that the presence of tangential forces causes the conical core to assume the shape of an oblique cone, and the breakage form to change. Moreover, with increasing normal contact force, the tangential force needed for crushing increases gradually first and then decreases suddenly.


Sign in / Sign up

Export Citation Format

Share Document