Activity Recognition for Elderly Care by Evaluating Proximity to Objects and Human Skeleton Data

Author(s):  
Julia Richter ◽  
Christian Wiede ◽  
Enes Dayangac ◽  
Ahsan Shahenshah ◽  
Gangolf Hirtz
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Heilym Ramirez ◽  
Sergio A. Velastin ◽  
Ignacio Meza ◽  
Ernesto Fabregas ◽  
Dimitrios Makris ◽  
...  

2020 ◽  
Vol 16 (1) ◽  
pp. 17-31 ◽  
Author(s):  
K.S. Gayathri ◽  
K.S. Easwarakumar ◽  
Susan Elias

Assistive health care system is a viable solution for elderly care to offer independent living. Such health care systems are feasible through smart homes, which are intended to enhance the living quality of the occupant. Activities of daily living (ADL) are considered in the design of a smart home and are extended to abnormality detection in the case of health care. Abnormality in occupant behavior is the deviation of ongoing activity with that of the built activity model. Generally, supervised machine learning strategies or knowledge engineering strategies are employed in the process of activity modeling. Supervised machine learning approaches incur overheads in annotating the dataset, while the knowledge modeling approaches incur overhead by being dependent on the domain expert for occupant specific knowledge. The proposed approach on the other hand, employs an unsupervised machine learning strategy to readily extract knowledge from unlabelled data using contextual pattern clustering and subsequently represents it as ontology activity model. Ontology offers enhanced activity recognition through its semantically clear representation and reasoning, it has restriction in handling temporal data. Hence, this article in addition to unsupervised modeling focuses at enabling temporal reasoning within ontology using fuzzy logic. The proposed fuzzy ontology activity recognition (FOAR) framework represents an activity model as a fuzzy temporal ontology. Fuzzy SWRL rules modeled within ontology aid activity recognition and abnormality detection for health care. The experimental results show that the proposed FOAR has better performance in abnormality detection than that of the existing systems.


Sensor Review ◽  
2017 ◽  
Vol 37 (3) ◽  
pp. 330-337 ◽  
Author(s):  
Zhelong Wang ◽  
Ye Chen

Purpose In sensor-based activity recognition, most of the previous studies focused on single activities such as body posture, ambulation and simple daily activities. Few works have been done to analyze complex concurrent activities. The purpose of this paper is to use a statistical modeling approach to classify them. Design/methodology/approach In this study, the recognition problem of concurrent activities is explored with the framework of parallel hidden Markov model (PHMM), where two basic HMMs are used to model the upper limb movements and lower limb states, respectively. Statistical time-domain and frequency-domain features are extracted, and then processed by the principal component analysis method for classification. To recognize specific concurrent activities, PHMM merges the information (by combining probabilities) from both channels to make the final decision. Findings Four studies are investigated to validate the effectiveness of the proposed method. The results show that PHMM can classify 12 daily concurrent activities with an average recognition rate of 93.2 per cent, which is superior to regular HMM and several single-frame classification approaches. Originality/value A statistical modeling approach based on PHMM is investigated, and it proved to be effective in concurrent activity recognition. This might provide more accurate feedback on people’s behaviors. Practical implications The research may be significant in the field of pervasive healthcare, supporting a variety of practical applications such as elderly care, ambient assisted living and remote monitoring.


2018 ◽  
Vol 14 (4) ◽  
pp. 155014771877254 ◽  
Author(s):  
Yang Sung-Hyun ◽  
Keshav Thapa ◽  
M Humayun Kabir ◽  
Lee Hee-Chan

Recognition of human activities is getting into the limelight among researchers in the field of pervasive computing, ambient intelligence, robotic, and monitoring such as assistive living, elderly care, and health care. Many platforms, models, and algorithms have been developed and implemented to recognize the human activities. However, existing approaches suffer from low-activity accuracy and high time complexity. Therefore, we proposed probabilistic log-Viterbi algorithm on second-order hidden Markov model that facilitates our algorithm by reducing the time complexity with increased accuracy. Second-order hidden Markov model is efficient relevance between previous two activities, current activity, and current observation that incorporate more information into recognition procedure. The log-Viterbi algorithm converts the products of a large number of probabilities into additions and finds the most likely activity from observation sequence under given model. Therefore, this approach maximizes the probability of activity recognition with improved accuracy and reduced time complexity. We compared our proposed algorithm among other famous probabilistic models such as Naïve Bayes, condition random field, hidden Markov model, and hidden semi-Markov model using three datasets in the smart home environment. The recognition possibility of our proposed method is significantly better in accuracy and time complexity than early proposed method. Moreover, this improved algorithm for activity recognition is much effective for almost all the dynamic environments such as assistive living, elderly care, healthcare applications, and home automation.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 16217-16225 ◽  
Author(s):  
Hanchuan Xu ◽  
Yuxin Pan ◽  
Jingxuan Li ◽  
Lanshun Nie ◽  
Xiaofei Xu

Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 317 ◽  
Author(s):  
Nadeem Ahmed ◽  
Jahir Ibna Rafiq ◽  
Md Rashedul Islam

Human activity recognition (HAR) techniques are playing a significant role in monitoring the daily activities of human life such as elderly care, investigation activities, healthcare, sports, and smart homes. Smartphones incorporated with varieties of motion sensors like accelerometers and gyroscopes are widely used inertial sensors that can identify different physical conditions of human. In recent research, many works have been done regarding human activity recognition. Sensor data of smartphone produces high dimensional feature vectors for identifying human activities. However, all the vectors are not contributing equally for identification process. Including all feature vectors create a phenomenon known as ‘curse of dimensionality’. This research has proposed a hybrid method feature selection process, which includes a filter and wrapper method. The process uses a sequential floating forward search (SFFS) to extract desired features for better activity recognition. Features are then fed to a multiclass support vector machine (SVM) to create nonlinear classifiers by adopting the kernel trick for training and testing purpose. We validated our model with a benchmark dataset. Our proposed system works efficiently with limited hardware resource and provides satisfactory activity identification.


2018 ◽  
Vol 9 (1) ◽  
pp. 155-167 ◽  
Author(s):  
Nicholas Melo ◽  
Jaeryoung Lee

Abstract The interest towards robots for elderly care has been growing in the last years. Systems aiming to integrate robot interactive components and the user’s activity recognition system are increasing as well. This work presents an activity aware intelligent system that supports user in his/her daily life tasks. The proposed system aims to integrate three important aspects into a smart house application (environment monitoring, user activity recognition and user friendly interaction). The information gathered from sensors across the environment is structured as the state of the environment in a compacted form called activity frame. This specific frame is used by a predictor (based on the decision tree method), in order to recognize the activities that have been performed by the user inside his/her domestic environment. The recognized activity is used by an user-interactive component, which uses the predicted behavior as a guideline for its interaction planner. The presented activity recognition system was tested with the data provided by different smart home projects, and the recognition rate for the proposed predictor has high recognition rate compared to other similar ones. The architecture described by the sensory network allows the system to be easily implemented in real time in a smart house context.


Algorithms ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 245
Author(s):  
Aiiad Albeshri

Many smart city and society applications such as smart health (elderly care, medical applications), smart surveillance, sports, and robotics require the recognition of user activities, an important class of problems known as human activity recognition (HAR). Several issues have hindered progress in HAR research, particularly due to the emergence of fog and edge computing, which brings many new opportunities (a low latency, dynamic and real-time decision making, etc.) but comes with its challenges. This paper focuses on addressing two important research gaps in HAR research: (i) improving the HAR prediction accuracy and (ii) managing the frequent changes in the environment and data related to user activities. To address this, we propose an HAR method based on Soft-Voting and Self-Learning (SVSL). SVSL uses two strategies. First, to enhance accuracy, it combines the capabilities of Deep Learning (DL), Generalized Linear Model (GLM), Random Forest (RF), and AdaBoost classifiers using soft-voting. Second, to classify the most challenging data instances, the SVSL method is equipped with a self-training mechanism that generates training data and retrains itself. We investigate the performance of our proposed SVSL method using two publicly available datasets on six human activities related to lying, sitting, and walking positions. The first dataset consists of 562 features and the second dataset consists of five features. The data are collected using the accelerometer and gyroscope smartphone sensors. The results show that the proposed method provides 6.26%, 1.75%, 1.51%, and 4.40% better prediction accuracy (average over the two datasets) compared to GLM, DL, RF, and AdaBoost, respectively. We also analyze and compare the class-wise performance of the SVSL methods with that of DL, GLM, RF, and AdaBoost.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1357
Author(s):  
Zhaozong Meng ◽  
Mingxing Zhang ◽  
Changxin Guo ◽  
Qirui Fan ◽  
Hao Zhang ◽  
...  

The recent scientific and technical advances in Internet of Things (IoT) based pervasive sensing and computing have created opportunities for the continuous monitoring of human activities for different purposes. The topic of human activity recognition (HAR) and motion analysis, due to its potentiality in human–machine interaction (HMI), medical care, sports analysis, physical rehabilitation, assisted daily living (ADL), children and elderly care, has recently gained increasing attention. The emergence of some novel sensing devices featuring miniature size, a light weight, and wireless data transmission, the availability of wireless communication infrastructure, the progress of machine learning and deep learning algorithms, and the widespread IoT applications has promised new opportunities for a significant progress in this particular field. Motivated by a great demand for HAR-related applications and the lack of a timely report of the recent contributions to knowledge in this area, this investigation aims to provide a comprehensive survey and in-depth analysis of the recent advances in the diverse techniques and methods of human activity recognition and motion analysis. The focus of this investigation falls on the fundamental theories, the innovative applications with their underlying sensing techniques, data fusion and processing, and human activity classification methods. Based on the state-of-the-art, the technical challenges are identified, and future perspectives on the future rich, sensing, intelligent IoT world are given in order to provide a reference for the research and practices in the related fields.


Sign in / Sign up

Export Citation Format

Share Document