LES on a Pitching Airfoil: Analysis of the Lift Coefficient Unsteadiness

Author(s):  
N. Guillaud ◽  
G. Balarac ◽  
E. Goncalvès
2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040108 ◽  
Author(s):  
Shi-Long Xing ◽  
He-Yong Xu ◽  
Zheng-Yin Ye ◽  
Ming-Sheng Ma ◽  
Yue Xu

The inflatable leading edge (ILE) as a dynamic stall control concept for helicopter rotor blades was investigated numerically on a dynamically pitching airfoil. A fluid–structure interaction (FSI) numerical method for the elastic membrane structure was constructed based on unsteady Reynolds-averaged Navier–Stokes (URANS) equations and mass spring damper (MSD) structural dynamic model. The numerical results indicate that the ILE can change the radius of curvature of the airfoil leading edge, which could reduce the streamwise adverse pressure gradient and suppress the formation of dynamic stall vortex (DSV). Although the maximum lift coefficient of the airfoil is reduced by 8.2%, the maximum drag and pitching moment coefficients of the airfoil are reduced by up to 50.1% and 55.3%, respectively.


2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Xuanhong An ◽  
David R. Williams ◽  
Jeff D. Eldredge ◽  
Tim Colonius

Author(s):  
Upender K Kaul

Abstract A detailed numerical study of harmonically pitching airfoils of NACA00 series is presented here. Based on the analysis of the CFD results, a hypothesis is made that a simple data model can capture the dynamics of the airfoils in pitch. The data model is based on the cl ?? (lift coefficient - angle of attack) hysteresis loops that retain generic geometrical characteristics for a wide range of reduced frequency, k, encountered in flutter in transonic flows for all the NACA00 airfoils considered. The model was trained on a subset of the considered NACA00 airfoils and then tested on the remaining NACA00 set, for a subset of the reduced frequencies. The model predictions of the cl ? ? hysteresis loops for the test set are shown to be in excellent agreement with the CFD results for the range of k typical of transonic flutter. The data model offers a paradigm shift in the prediction of transonic flow dynamics of pitching airfoils and will guide the development of a new transfer function that will be incorporated in a new aeroelastic framework leading to an appropriate transonic flutter model for use in the development of future aircraft.


2010 ◽  
Vol 1 (1-2) ◽  
pp. 15-20 ◽  
Author(s):  
B. Bolló

Abstract The two-dimensional flow around a stationary heated circular cylinder at low Reynolds numbers of 50 < Re < 210 is investigated numerically using the FLUENT commercial software package. The dimensionless vortex shedding frequency (St) reduces with increasing temperature at a given Reynolds number. The effective temperature concept was used and St-Re data were successfully transformed to the St-Reeff curve. Comparisons include root-mean-square values of the lift coefficient and Nusselt number. The results agree well with available data in the literature.


2015 ◽  
Vol 3 (2) ◽  
pp. 28-49
Author(s):  
Ridha Alwan Ahmed

       In this paper, the phenomena of vortex shedding from the circular cylinder surface has been studied at several Reynolds Numbers (40≤Re≤ 300).The 2D, unsteady, incompressible, Laminar flow, continuity and Navier Stokes equations have been solved numerically by using CFD Package FLUENT. In this package PISO algorithm is used in the pressure-velocity coupling.        The numerical grid is generated by using Gambit program. The velocity and pressure fields are obtained upstream and downstream of the cylinder at each time and it is also calculated the mean value of drag coefficient and value of lift coefficient .The results showed that the flow is strongly unsteady and unsymmetrical at Re>60. The results have been compared with the available experiments and a good agreement has been found between them


Author(s):  
Daksh Bhatia ◽  
Praneeth KR ◽  
Babu Rao Ponangi ◽  
Meghana Athadkar ◽  
Carine V Dsouza

Non-pneumatic tyres (NPT) provide a greater advantage over the pneumatic type owing to their construct which increases the reliability of the tyre operation and effectively reduces maintenance involved. Analysing the aerodynamic forces acting on a NPT becomes a crucial factor in understanding it’s suitability for practical implementation. In the present work, the aerodynamic performance of a NPT using CFD tool – SimScale® is studied. This work includes a comparative study of a pneumatic tyre, a NPT with wedge spokes and a NPT with hexagonal spokes (NPT-HS). The effect of air velocity, steering (yaw) angle and camber angle on the aerodynamic performance of the NPT-HS is evaluated using CFD. By increasing the steering angle from 0° to 15°, the lift coefficient decreases by 37% approximately at all velocities. Whereas drag coefficient initially decreases by 21% till 7.5° steering angle and then starts increasing. Increasing camber angle from 0° to 1.5°, both drag and lift coefficients goes on decreasing by approximately 7% and 27% respectively.


Author(s):  
ZH Yuan ◽  
SY Guo ◽  
SN Zhang ◽  
JQ Zhao ◽  
WJ Lu ◽  
...  

Based on the suspension of a missile using folding rotary wings and airbags, in order to improve the basic parameters and motion characteristics of the rotor during the unfolding process and analyze the aerodynamic characteristics of the entire device in the suspension state, after proposing a scheme of double-spin mechanism, the main folding and unfolding mechanism, initial driving device, rotating driving device, and locking mechanism were designed, and the simulation research is studied by the Automatic Dynamic Analysis of Mechanical System and Ansys Fluent Fluid Simulation software, respectively. The results show that the rotation rate was controlled at 41.8 mm/s, the various motion parameters are reasonable, and the operation process is relatively smooth, with high reliability. The speed and pressure value at the tip of the rotor are higher and the aerodynamic disturbance is obvious, which has a great influence on the aerodynamic performance. The speed and pressure distribution of the surrounding flow field is stable, the lift provided is 46 N, and the lift coefficient is 0.55, which can ensure the long-time suspension state of the missile. This paper puts forward a valuable design idea and has practical reference value for the research of the suspended missile.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 203
Author(s):  
Yufei Zhang ◽  
Pu Yang ◽  
Runze Li ◽  
Haixin Chen

The unsteady flow characteristics of a supercritical OAT15A airfoil with a shock control bump were numerically studied by a wall-modeled large eddy simulation. The numerical method was first validated by the buffet and nonbuffet cases of the baseline OAT15A airfoil. Both the pressure coefficient and velocity fluctuation coincided well with the experimental data. Then, four different shock control bumps were numerically tested. A bump of height h/c = 0.008 and location xB/c = 0.55 demonstrated a good buffet control effect. The lift-to-drag ratio of the buffet case was increased by 5.9%, and the root mean square of the lift coefficient fluctuation was decreased by 67.6%. Detailed time-averaged flow quantities and instantaneous flow fields were analyzed to demonstrate the flow phenomenon of the shock control bumps. The results demonstrate that an appropriate “λ” shockwave pattern caused by the bump is important for the flow control effect.


Sign in / Sign up

Export Citation Format

Share Document