What Does the Eye Want? An Investigation of Interface Parameters to Ensure Intuitive Gaze-Controlled Interactions for Multidimensional Inputs

Author(s):  
Marcus Jenke ◽  
Thomas Maier
Keyword(s):  
2020 ◽  
Vol 65 (10) ◽  
pp. 904
Author(s):  
V. O. Zamorskyi ◽  
Ya. M. Lytvynenko ◽  
A. M. Pogorily ◽  
A. I. Tovstolytkin ◽  
S. O. Solopan ◽  
...  

Magnetic properties of the sets of Fe3O4(core)/CoFe2O4(shell) composite nanoparticles with a core diameter of about 6.3 nm and various shell thicknesses (0, 1.0, and 2.5 nm), as well as the mixtures of Fe3O4 and CoFe2O4 nanoparticles taken in the ratios corresponding to the core/shell material contents in the former case, have been studied. The results of magnetic research showed that the coating of magnetic nanoparticles with a shell gives rise to the appearance of two simultaneous effects: the modification of the core/shell interface parameters and the parameter change in both the nanoparticle’s core and shell themselves. As a result, the core/shell particles acquire new characteristics that are inherent neither to Fe3O4 nor to CoFe2O4. The obtained results open the way to the optimization and adaptation of the parameters of the core/shell spinel-ferrite-based nanoparticles for their application in various technological and biomedical domains.


Author(s):  
А.Д. Обухов ◽  
М.Н. Краснянский ◽  
М.С. Николюкин

Рассматривается проблема выбора оптимальных параметров интерфейса в информационных системах с целью его персонализации под предпочтения пользователя и возможности его оборудования. В настоящее время для ее решения используется алгоритмическое обеспечение и статистическая обработка предпочтений пользователей, что не обеспечивает достаточной гибкости и точности. Поэтому в данной работе предлагается применение разработанного метода адаптации параметров интерфейса, основанного на анализе и обработке пользовательской информации с помощью нейронных сетей. Научная новизна метода заключается в автоматизации сбора, анализа данных и настройки интерфейса за счет использования и интеграции нейронных сетей в информационную систему. Рассмотрена практическая реализация предлагаемого метода на Python. Экспертная оценка адаптивности интерфейса тестовой информационной системы после внедрения разработанного метода показала его перспективность и эффективность. Разработанный метод показывает лучшую точность и низкую сложность программной реализации относительно классического алгоритмического подхода. Полученные результаты могут использоваться для автоматизации процесса выбора компонентов интерфейса различных информационных систем. Дальнейшие исследования заключаются в развитии и интеграции разработанного метода в рамках фреймворка адаптации информационных систем Here we consider the problem of choosing the optimal parameters of the interface in information systems with the aim of personalizing it for the preferences of the user and the capabilities of his equipment. Currently, algorithmic support and statistical processing of user preferences are used to solve it, which does not provide sufficient flexibility and accuracy. Therefore, in this work, we propose the application of the developed method for adapting interface parameters based on the analysis and processing of user information using neural networks. The scientific novelty of the method is to automate the collection, analysis of data and interface settings through the use and integration of neural networks in the information system. We consider the practical implementation of the proposed method in Python. An expert assessment of the adaptability of the interface of the test information system after the implementation of the developed method showed its availability and efficiency. The developed method shows the best accuracy and low complexity of software implementation relative to the classical algorithmic approach. The results obtained can be used to automate the selection of interface components for various information systems. Further research consists in the development and integration of the developed method within the framework of the information systems adaptation framework


2012 ◽  
Vol 170-173 ◽  
pp. 474-477
Author(s):  
Ying Jie Zheng ◽  
Lian Xiang Li ◽  
Shu Cai Li ◽  
Xue Dai

A pile-soil interface model was established. The model considered the influence of interface lateral stress on the interface mechanics parameters. In this model the ultimate shear stress and the max tangential stiffness in loading process were related with pile lateral stress ratio. The influence of loading model on pile side resistance can be considered in this model. With the model, the interface parameters under pressing down at pile top can be got from those under pushing at pile bottom load. The suggested model was applied to analyze an O-cell pile test case. The analysis results show that the bearing capacity under loading press at pile top is higher than that under pushing at pile bottom, and the increase extent is agree with practical experience. It is also confirmed that the model is applicable and effective.


Composites ◽  
1994 ◽  
Vol 25 (7) ◽  
pp. 476-481 ◽  
Author(s):  
M. Kuntz ◽  
K.-H. Schlapschi ◽  
B. Meier ◽  
G. Grathwohl

2010 ◽  
Vol 159 ◽  
pp. 163-166 ◽  
Author(s):  
S. Alexandrova ◽  
A. Szekeres

In the present paper we discuss the defects at the oxide/Si interface and the structure of silicon oxide films grown on plasma hydrogenated (100) and (111)Si. The effect of oxide thickness ranging from 7 to 40 nm on the interface parameters was examined. Electrically active defects were characterized through C-V and G-V measurements. The dependence of the refractive index on oxide thickness was studied. Information on the oxide structure was inferred through the refractive index evaluated from ellipsometric measurements. From both, the electrical and optical results a characteristic oxide thickness was found, below which the oxide structure is different from SiO2, most probably SiOх. It is related to a modified Si surface during the pre-oxidation plasma treatment and its value depends on Si orientation and pre-clean conditions. A characteristic oxide thickness of 13 nm was found for Si hydrogenated without heating and, of 9 nm for Si hydrogenated at 300oC.


Author(s):  
R.F.B.M. DHEERE
Keyword(s):  

2017 ◽  
Vol 82 (5) ◽  
pp. 1088-1103
Author(s):  
Xu Wang ◽  
Peter Schiavone

Abstract Using a linear stability analysis and the transfer matrix method, we investigate the surface instability of an imperfectly bonded multi-layered curved film interacting with a curved rigid contactor, another imperfectly bonded multi-layered curved film or an imperfectly bonded multi-layered simply-supported cylindrical shell in each case through the action of attractive van der Waals forces. The imperfect interface is modelled as a linear spring layer with vanishing thickness characterized by normal and tangential imperfect interface parameters. Detailed numerical results are presented to demonstrate the resulting analytical solutions.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2704
Author(s):  
Kicheol Lee ◽  
Dongwook Kim ◽  
Soon-Wook Choi ◽  
Soo-Ho Chang ◽  
Tae-Ho Kang ◽  
...  

Waterproof membranes have higher initial strength, faster construction, and better waterproofing than conventional sheet membranes. In addition, their polymer constituents have much higher interfacial adhesion and tensile strength than those of conventional materials. However, despite their advantages, waterproof membranes are not widely used in civil construction. This study evaluates the material properties and interface parameters of a waterproof membrane by considering the results of laboratory experiments and numerical analysis. Since the contact behavior of a membrane at its interface with shotcrete is important for understanding the mechanism of the support it offers known as a shotcrete tunnel lining, modeling should adopt appropriate contact conditions. The numerical analysis identifies the suitability and contact conditions of the waterproof membrane in various conditions.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
E. P. Petrov

A frequency-domain method has been developed to predict and comprehensively analyze the limit-cycle flutter-induced vibrations in bladed disks and other structures with nonlinear contact interfaces. The method allows, for the first time, direct calculation of the limit-cycle amplitudes and frequencies as functions of contact interface parameters and aerodynamic characteristics using realistic large-scale finite element models of structures. The effects of the parameters of nonlinear contact interfaces on limit-cycle amplitudes and frequencies have been explored for major types of nonlinearities occurring in gas-turbine structures. New mechanisms of limiting the flutter-induced vibrations have been revealed and explained.


Sign in / Sign up

Export Citation Format

Share Document