Cathodoluminescence Microanalysis of the Defect Microstructures of Bulk and Nanoscale Ultrapure Silicon Dioxide Polymorphs for Device Applications

Author(s):  
Marion A. Stevens-Kalceff
1977 ◽  
Vol 14 (2) ◽  
pp. 125-128
Author(s):  
T. E. Price

The equipment described uses silane to deposit silicon dioxide at 400°C on to a substrate 50 mm in diameter; the oxide may be doped with phosphorus or boron. Details are given of the chemical reactions involved, the construction and operation together with some examples of possible device applications.


1989 ◽  
Vol 65 (10) ◽  
pp. 4082-4084 ◽  
Author(s):  
J. J. DeLima ◽  
A. J. Snell ◽  
K. V. Krishna ◽  
A. E. Owen ◽  
A. Hawryliw ◽  
...  

2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Li Gao

AbstractAtomic scale investigations of the electronic properties of graphene are playing a crucial role in understanding and tuning the exotic properties of this material for its potential device applications. Scanning tunneling microscopy (STM) and spectroscopy (STS) are unique techniques for atomic scale investigations and have been extensively used in graphene research. In this article, we review recent progresses in STM and STS studies of the electronic properties of suspended graphene as well as graphene supported by different substrates including graphite, metals, silicon carbide, silicon dioxide and boron nitride.


Author(s):  
P. Ling ◽  
R. Gronsky ◽  
J. Washburn

The defect microstructures of Si arising from ion implantation and subsequent regrowth for a (111) substrate have been found to be dominated by microtwins. Figure 1(a) is a typical diffraction pattern of annealed ion-implanted (111) Si showing two groups of extra diffraction spots; one at positions (m, n integers), the other at adjacent positions between <000> and <220>. The object of the present paper is to show that these extra reflections are a direct consequence of the microtwins in the material.


Author(s):  
Joanna L. Batstone

Interest in II-VI semiconductors centres around optoelectronic device applications. The wide band gap II-VI semiconductors such as ZnS, ZnSe and ZnTe have been used in lasers and electroluminescent displays yielding room temperature blue luminescence. The narrow gap II-VI semiconductors such as CdTe and HgxCd1-x Te are currently used for infrared detectors, where the band gap can be varied continuously by changing the alloy composition x.Two major sources of precipitation can be identified in II-VI materials; (i) dopant introduction leading to local variations in concentration and subsequent precipitation and (ii) Te precipitation in ZnTe, CdTe and HgCdTe due to native point defects which arise from problems associated with stoichiometry control during crystal growth. Precipitation is observed in both bulk crystal growth and epitaxial growth and is frequently associated with segregation and precipitation at dislocations and grain boundaries. Precipitation has been observed using transmission electron microscopy (TEM) which is sensitive to local strain fields around inclusions.


Author(s):  
Karren L. More

Beta-SiC is an ideal candidate material for use in semiconductor device applications. Currently, monocrystalline β-SiC thin films are epitaxially grown on {100} Si substrates by chemical vapor deposition (CVD). These films, however, contain a high density of defects such as stacking faults, microtwins, and antiphase boundaries (APBs) as a result of the 20% lattice mismatch across the growth interface and an 8% difference in thermal expansion coefficients between Si and SiC. An ideal substrate material for the growth of β-SiC is α-SiC. Unfortunately, high purity, bulk α-SiC single crystals are very difficult to grow. The major source of SiC suitable for use as a substrate material is the random growth of {0001} 6H α-SiC crystals in an Acheson furnace used to make SiC grit for abrasive applications. To prepare clean, atomically smooth surfaces, the substrates are oxidized at 1473 K in flowing 02 for 1.5 h which removes ∽50 nm of the as-grown surface. The natural {0001} surface can terminate as either a Si (0001) layer or as a C (0001) layer.


Author(s):  
S. Hillyard ◽  
Y.-P. Chen ◽  
J.D. Reed ◽  
W.J. Schaff ◽  
L.F. Eastman ◽  
...  

The positions of high-order Laue zone (HOLZ) lines in the zero order disc of convergent beam electron diffraction (CBED) patterns are extremely sensitive to local lattice parameters. With proper care, these can be measured to a level of one part in 104 in nanometer sized areas. Recent upgrades to the Cornell UHV STEM have made energy filtered CBED possible with a slow scan CCD, and this technique has been applied to the measurement of strain in In0.2Ga0.8 As wires.Semiconductor quantum wire structures have attracted much interest for potential device applications. For example, semiconductor lasers with quantum wires should exhibit an improvement in performance over quantum well counterparts. Strained quantum wires are expected to have even better performance. However, not much is known about the true behavior of strain in actual structures, a parameter critical to their performance.


Author(s):  
M G. Norton ◽  
E.S. Hellman ◽  
E.H. Hartford ◽  
C.B. Carter

The bismuthates (for example, Ba1-xKxBiO3) represent a class of high transition temperature superconductors. The lack of anisotropy and the long coherence length of the bismuthates makes them technologically interesting for superconductor device applications. To obtain (100) oriented Ba1-xKxBiO3 films on (100) oriented MgO, a two-stage deposition process is utilized. In the first stage the films are nucleated at higher substrate temperatures, without the potassium. This process appears to facilitate the formation of the perovskite (100) orientation on (100) MgO. This nucleation layer is typically between 10 and 50 nm thick. In the second stage, the substrate temperature is reduced and the Ba1-xKxBiO3 is grown. Continued growth of (100) oriented material is possible at the lower substrate temperature.


Author(s):  
J. E. O'Neal ◽  
S. M. L. Sastry ◽  
J. W. Davis

The radiation-induced defect structure and nonequilibrium phase precipitation were studied in T1-6A1-4V (an alpha-beta titanium alloy), irradiated at 450 ± 30°C in row VII of the EBR-II to a fluence of 3.0 × 1021 neutrons/cm2 (En > 0.1 MeV). The Irradiation-induced defect microstructures were examined using bright-field, conventional dark-field, and weak-beam dark-field techniques. The nature of dislocations and dislocation loops was determined by standard-contrast experiments under two-beam conditions, and the small defect clusters were identified using the line-of-contrast criterion and black-white vector orientation criterion.


Sign in / Sign up

Export Citation Format

Share Document