Different Methods to Evaluate Strength from Compression Tests for Rock Salt

Author(s):  
Yu Bian ◽  
Jianfeng Liu ◽  
Guosheng Ding ◽  
Liang Chen ◽  
Zhide Wu ◽  
...  
Keyword(s):  
2020 ◽  
Vol 53 (9) ◽  
pp. 4061-4076 ◽  
Author(s):  
Jinyang Fan ◽  
Wei Liu ◽  
Deyi Jiang ◽  
Jie Chen ◽  
William N. Tiedeu ◽  
...  

Author(s):  
Aditya Singh ◽  
Chandan Kumar ◽  
L. Gopi Kannan ◽  
K. Seshagiri Rao ◽  
Ramanathan Ayothiraman

2016 ◽  
Vol 10 (1) ◽  
pp. 524-531 ◽  
Author(s):  
Yan Chen ◽  
Linjian Ma ◽  
Pengxian Fan ◽  
Xupu Yang ◽  
Lu Dong

Post-yield strength and deformation properties of rock salt are of great importance to the stability of rock surrounding deep underground storage caverns. Uniaxial and triaxial compression tests were performed to explore the volume change of Qianjiang rock salt under different confining stress states. The experimental results indicate that the dilatancy angle first increases rapidly then decreases gradually and drives to a constant with equivalent plastic strain. A higher confining stress results in a lower peak dilatancy angle. With the increase of confining pressure, the dilatancy angle decreases nonlinearly. Based on the volumetric-axial strain curves of rock salt, a mobilized dilatancy angle model taking into account the effects of confining pressure and the equivalent plastic strain was developed using nonlinear fitting. The new model was implemented in the software FLAC3D and verified effective to predict the volumetric dilatancy behavior of rock salt.


Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


Author(s):  
J. Cadoz ◽  
J. Castaing ◽  
J. Philibert

Plastic deformation of alumina has been much studied; basal slip occurs and dislocation structures have been investigated by transmission electron microscopy (T.E.M.) (1). Non basal slip has been observed (2); the prismatic glide system <1010> {1210} has been obtained by compression tests between 1400°C and 1800°C (3). Dislocations with <0110> burgers vector were identified using a 100 kV microscope(4).We describe the dislocation structures after prismatic slip, using high voltage T.E.M. which gives much information.Compression tests were performed at constant strainrate (∿10-4s-1); the maximum deformation reached was 0.03. Thin sections were cut from specimens deformed at 1450°C, either parallel to the glide plane or perpendicular to the glide direction. After mechanical thinning, foils were produced by ion bombardment. Details on experimental techniques can be obtained through reference (3).


The analysis of the previous results of the study on concrete stress-strain behavior at elevated temperatures has been carried out. Based on the analysis, the main reasons for strength retrogression and elastic modulus reduction of concrete have been identified. Despite a significant amount of research in this area, there is a large spread in experimental data received, both as a result of compression and tension. In addition, the deformation characteristics of concrete are insufficiently studied: the coefficient of transverse deformation, the limiting relative compression deformation corresponding to the peak load and the almost complete absence of studies of complete deformation diagrams at elevated temperatures. The two testing chambers provided creating the necessary temperature conditions for conducting studies under bending compression and tension have been developed. On the basis of the obtained experimental data of physical and mechanical characteristics of concrete at different temperatures under conditions of axial compression and tensile bending, conclusions about the nature of changes in strength and deformation characteristics have been drawn. Compression tests conducted following the method of concrete deformation complete curves provided obtaining diagrams not only at normal temperature, but also at elevated temperature. Based on the experimental results, dependences of changes in prism strength and elastic modulus as well as an equation for determining the relative deformation and stresses at elevated temperatures at all stages of concrete deterioration have been suggested.


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Yasuhiro Nakajima

Surgical treatment for thoracic outlet syndrome (TOS) is a very controversial surgery because objective diagnosis, such as image and electrophysiological examination, is very difficult. Clinical provocation tests including brachial plexus compression tests, such as Morley and Roos, and vascular compression tests, such as Wright and Eden ,are not high in specificity and are likely to be positive even in healthy persons and patients with carpal tunnel syndrome. We place emphasis on the laterality of latency and amplitude in the sensory neural action potential (SNAP) of the medial antebrachial cutaneous nerve and ulnar nerve. After enough stretching exercises of scapular stabilizers and brachial plexus block, we always select surgery. In this presentation, I would like to show our diagnosis method and treatment strategy including surgery.


Sign in / Sign up

Export Citation Format

Share Document