The Impact of Solar Activity on the Earth Upper Atmosphere as Inferred from the CORONAS-F Scientific Experiments

Author(s):  
S. I. Boldyrev ◽  
I. A. Egorov ◽  
I. A. Zhitnik ◽  
G. S. Ivanov–Kholodny ◽  
S. P. Ignat’yev ◽  
...  
Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1526
Author(s):  
Chen-Ke-Min Teng ◽  
Sheng-Yang Gu ◽  
Yusong Qin ◽  
Xiankang Dou

In this study, a global atmospheric model, Specified Dynamics Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (SD-WACCM-X), and the residual circulation principle were used to study the global atmospheric circulation from the lower to upper atmosphere (~500 km) from 2002 to 2019. Our analysis shows that the atmospheric circulation is clearly influenced by solar activity, especially in the upper atmosphere, which is mainly characterized by an enhanced atmospheric circulation in years with high solar activity. The atmospheric circulation in the upper atmosphere also exhibits an ~11 year period, and its variation is highly correlated with the temporal variation in the F10.7 solar index during the same time series, with a maximum correlation coefficient of up to more than 0.9. In the middle and lower atmosphere, the impact of solar activity on the atmospheric circulation is not as obvious as in the upper atmosphere due to some atmospheric activities such as the Quasi-Biennial Oscillation (QBO), El Niño–Southern Oscillation (ENSO), sudden stratospheric warming (SSW), volcanic forcing, and so on. By comparing the atmospheric circulation in different latitudinal regions between years with high and low solar activity, we found the atmospheric circulation in mid- and high-latitude regions is more affected by solar activity than in low-latitude and equatorial regions. In addition, clear seasonal variation in atmospheric circulation was detected in the global atmosphere, excluding the regions near 10−4 hPa and the lower atmosphere, which is mainly characterized by a flow from the summer hemisphere to the winter hemisphere. In the middle and low atmosphere, the atmospheric circulation shows a quasi-biennial oscillatory variation in the low-latitude and equatorial regions. This work provides a referable study of global atmospheric circulation and demonstrates the impacts of solar activity on global atmospheric circulation.


Author(s):  
A. Volvach ◽  
G. Kurbasova

Anomalous enhancement of solar insolation of the earth's surface in the presence of foci of excitation in its depths can cause a response at local sites. Such foci include, first of all, recent and past (retro) volcanoes, such as the ancient volcano on the territory of Kara-Dag in the Crimea. The authors of this article have found increased, in comparison with other localities of the Crimea, general insolation according to SSE. According to the 22-year linear trend, the rate of insolation growth falling on the earth's surface at Kara-Dag has been calculated, which is 2,69 kWh/m2 per century, being more than 2 times higher than insolation growth in other areas of the Crimea. This phenomenon has been the subject of discussion, and additional research is needed, both on the geological structure of Kara-Dag and on the impact of external and internal forces. At the stage of studying the structure of data on insolation of the earth's surface at Kara-Dag, we have built a 6-order sine-wave model. The most powerful (amplitudes more than an order of magnitude higher than the noise level) regular oscillations on the 22-year interval have periods of 365,3 and 365,7 days. Statistical estimates of the degree of approximation by a sinusoidal model (R2 = 0,9, RMSE = 0,7) indicate that, in addition to regular periodic oscillations, there are irregular fluctuations in the data at time intervals determined by a continuous time-frequency wavelet analysis. The wavelet transformation graph highlights the interval of insolation energy growth at Kara-Dag locality after 1995. In order to analyze the statistical relationship of changes in local insolation of the Earth's surface with the Earth's rotation around the axis and its orbital movement, solar activity and global temperature, autoregression models of the power spectral density were calculated using which coherent oscillations were found between variations in Kara-Dag paragraph and variations in the data: on the length of the day (LOD) with a period of 11,8 years and a square modulus of coherence of 0,85; about solar activity with periods of 10,5, 3,6 years and a squared coherence modulus of 0,8 and 0,85; about global temperature indices with periods of 2,3, 3,5 years and squares of coherence modulus 0,7 and 0,9, respectively. The increased growth of insolation and the temperature of the earth at Kara-Dag locality that we found requires additional research and observations.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1600
Author(s):  
Michael Hanzelka ◽  
Jiří Dan ◽  
Pavel Fiala ◽  
Přemysl Dohnal

We evaluate the impact of changes in solar activity on three significant human psychophysiological parameters: skin conductance, electromyography (EMG), and the share of abdominal and diaphragmatic breathing in overall ventilation. Variations affecting human psychophysiology due to changes in solar activity directly document the assertion that psychology, behavior, and decision-making all reflect geomagnetic field alterations that stem from variable solar activity. The relevant experiments showed that solar processes, during which the Earth is exposed to electrically charged particles from the Sun (solar wind), exert an impact on the psychophysiological parameters of the body.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


2019 ◽  
Vol 28 (1) ◽  
pp. 180-190
Author(s):  
Ireneusz Wlodarczyk

AbstractWe computed the impact solutions of the potentially dangerous Near Earth Asteroid (NEA) 2001 BB16 based on 47 optical observations from January 20.08316 UTC, 2001, through February 09.15740 UTC, 2016, and one radar observation from January 19.90347 UTC, 2016. We used two methods to sample the starting Line of Variation (LOV). First method, called thereafter LOV1, with the uniform sampling of the LOV parameter, out to LOV = 5 computing 3000 virtual asteroids (VAs) on both sides of the LOV, which gives 6001 VAs and propagated their orbits to JD2525000.5 TDT=February 12, 2201. We computed the non-gravitational parameterA2=(34.55±7.38)·10–14 au/d2 for nominal orbit of 2001 BB16 and possible impacts with the Earth until 2201. For potential impact in 2195 we find A2=20.0·10−14 au/d2. With a positive value of A2, 2001 BB16 can be prograde rotator. Moreover, we computed Lyapunov Time (LT) for 2001 BB16, which for all VAs, has a mean value of about 25 y. We showed that impact solutions, including the calculated probability of a possible collision of a 2001 BB16 asteroid with the Earth depends on how to calculate and take into account the appropriate gravitational model, including the number of perturbing massive asteroids. In some complicated cases, it may depend also on the number of clones calculated for a given sigma LOV1. The second method of computing the impact solutions, called thereafter LOV2, is based on a non-uniformly sampling of the LOV. We showed that different methods of sampling the LOV can give different impact solutions, but all computed dates of possible impacts of the asteroid 2001 BB16 with the Earth occur in accordance at the end of the 22nd century.


2021 ◽  
Author(s):  
desna rura sarapang

The emergence of a new virus in the global world at the end of 2019, namely Corona Virus Disease 2019, brought tremendous excitement to all inhabitants of the earth. The emergence of this virus brings tremendous concern and fear to the world because the spread of this virus is quite fast, even the most frightening is that the risk of death of people exposed to this virus is very large. Indonesia itself, cannot avoid the impact of this Covid-19 case. As a form of efforts to prevent and minimize transmission of the virus, the Indonesian government has issued a social distancing / physical distancing recommendation. This situation also causes the interaction between communities to be very limited. This situation seems to be able to eliminate hospitality among the community. This paper aims to emphasize the importance of maintaining the value of Christian hospitality in society amid the Covid-19 pandemic.


2021 ◽  
Author(s):  
Courtney Catherine Barajas

Old English Ecotheology examines the impact of environmental crises on early medieval English theology and poetry. Like their modern counterparts, theologians at the turn of the first millennium understood the interconnectedness of the Earth community, and affirmed the independent subjectivity of other-than-humans. The author argues for the existence of a specific Old English ecotheology, and demonstrates the influence of that theology on contemporaneous poetry. Taking the Exeter Book as a microcosm of the poetic corpus, she explores the impact of early medieval apocalypticism and environmental anxiety on Old English wisdom poems, riddles, elegies, and saints' lives.


Sign in / Sign up

Export Citation Format

Share Document