MODEL OF INSOLATION OF THE EARTH SURFACE IN THE KARA-DAG LOCALITY ACCORDING TO SSE DATA

Author(s):  
A. Volvach ◽  
G. Kurbasova

Anomalous enhancement of solar insolation of the earth's surface in the presence of foci of excitation in its depths can cause a response at local sites. Such foci include, first of all, recent and past (retro) volcanoes, such as the ancient volcano on the territory of Kara-Dag in the Crimea. The authors of this article have found increased, in comparison with other localities of the Crimea, general insolation according to SSE. According to the 22-year linear trend, the rate of insolation growth falling on the earth's surface at Kara-Dag has been calculated, which is 2,69 kWh/m2 per century, being more than 2 times higher than insolation growth in other areas of the Crimea. This phenomenon has been the subject of discussion, and additional research is needed, both on the geological structure of Kara-Dag and on the impact of external and internal forces. At the stage of studying the structure of data on insolation of the earth's surface at Kara-Dag, we have built a 6-order sine-wave model. The most powerful (amplitudes more than an order of magnitude higher than the noise level) regular oscillations on the 22-year interval have periods of 365,3 and 365,7 days. Statistical estimates of the degree of approximation by a sinusoidal model (R2 = 0,9, RMSE = 0,7) indicate that, in addition to regular periodic oscillations, there are irregular fluctuations in the data at time intervals determined by a continuous time-frequency wavelet analysis. The wavelet transformation graph highlights the interval of insolation energy growth at Kara-Dag locality after 1995. In order to analyze the statistical relationship of changes in local insolation of the Earth's surface with the Earth's rotation around the axis and its orbital movement, solar activity and global temperature, autoregression models of the power spectral density were calculated using which coherent oscillations were found between variations in Kara-Dag paragraph and variations in the data: on the length of the day (LOD) with a period of 11,8 years and a square modulus of coherence of 0,85; about solar activity with periods of 10,5, 3,6 years and a squared coherence modulus of 0,8 and 0,85; about global temperature indices with periods of 2,3, 3,5 years and squares of coherence modulus 0,7 and 0,9, respectively. The increased growth of insolation and the temperature of the earth at Kara-Dag locality that we found requires additional research and observations.

Author(s):  
S. I. Boldyrev ◽  
I. A. Egorov ◽  
I. A. Zhitnik ◽  
G. S. Ivanov–Kholodny ◽  
S. P. Ignat’yev ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1600
Author(s):  
Michael Hanzelka ◽  
Jiří Dan ◽  
Pavel Fiala ◽  
Přemysl Dohnal

We evaluate the impact of changes in solar activity on three significant human psychophysiological parameters: skin conductance, electromyography (EMG), and the share of abdominal and diaphragmatic breathing in overall ventilation. Variations affecting human psychophysiology due to changes in solar activity directly document the assertion that psychology, behavior, and decision-making all reflect geomagnetic field alterations that stem from variable solar activity. The relevant experiments showed that solar processes, during which the Earth is exposed to electrically charged particles from the Sun (solar wind), exert an impact on the psychophysiological parameters of the body.


Author(s):  
O. M. Pokrovsky

We proposed the implementation of the multiple regression to create a statistical model for description of the climate change under the influence of specified climate-impacting factors. This model provides not only estimates of the temporal evolution of global temperature, but also a set of corresponding confidence intervals with a given level of statistical significance (probability). The elimination of the linear trend of climatic temperature series (CRUTEM) and atmospheric CO2 concentration allows objectively and quantitatively assess the impact of natural climate change factors. The global CRUTEM temperature responds quasi-synchronously to fluctuations in the average surface temperature of the North Atlantic (AMO index), but with a delay of about 15 years – on changes in solar activity (Wolf numbers). The linear trend of increasing CO2 concentrations in the atmosphere explains almost all the interannual variability and reflects the linear trend of global temperature, but it covers a part of its interannual variability.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


2015 ◽  
Vol 15 (2) ◽  
pp. 37-52
Author(s):  
Mahpud Sujai

This paper is intended to analyze the effect of oil price changes on potential output and actual output in the state budget cycle and identifies the output gap which is the difference between potential output and actual output. The research methodology uses a quantitative approach to analyze problems that occur related to the impact of oil price changes to the state budget cycle. Data analysis was carried out through the approach cyclically adjusted fiscal balance with a simplified approach. This research identified that the potential output is likely to continue increasing in line with Indonesia's oil price trends which is continue to rise following the world oil price movements. In calculating the output gap using a linear trend and HP filter, the result is fuctuating depend on the percentage changes in both potential output and actual output. This paper concludes that Indonesian oil price (ICP) has a significant impact on changes in the state budget cycle. If oil prices rise, the output gap between potential output and actual output is greater, and vice versa. This will make the budget vulnerable to shock that occurs as an external infuence.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 299
Author(s):  
Jaime Pinilla ◽  
Miguel Negrín

The interrupted time series analysis is a quasi-experimental design used to evaluate the effectiveness of an intervention. Segmented linear regression models have been the most used models to carry out this analysis. However, they assume a linear trend that may not be appropriate in many situations. In this paper, we show how generalized additive models (GAMs), a non-parametric regression-based method, can be useful to accommodate nonlinear trends. An analysis with simulated data is carried out to assess the performance of both models. Data were simulated from linear and non-linear (quadratic and cubic) functions. The results of this analysis show how GAMs improve on segmented linear regression models when the trend is non-linear, but they also show a good performance when the trend is linear. A real-life application where the impact of the 2012 Spanish cost-sharing reforms on pharmaceutical prescription is also analyzed. Seasonality and an indicator variable for the stockpiling effect are included as explanatory variables. The segmented linear regression model shows good fit of the data. However, the GAM concludes that the hypothesis of linear trend is rejected. The estimated level shift is similar for both models but the cumulative absolute effect on the number of prescriptions is lower in GAM.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 648
Author(s):  
Stanislav Myslenkov ◽  
Vladimir Platonov ◽  
Alexander Kislov ◽  
Ksenia Silvestrova ◽  
Igor Medvedev

The recurrence of extreme wind waves in the Kara Sea strongly influences the Arctic climate change. The period 2000–2010 is characterized by significant climate warming, a reduction of the sea ice in the Arctic. The main motivation of this research to assess the impact of climate change on storm activity over the past 39 years in the Kara Sea. The paper presents the analysis of wave climate and storm activity in the Kara Sea based on the results of numerical modeling. A wave model WAVEWATCH III is used to reconstruct wind wave fields for the period from 1979 to 2017. The maximum significant wave height (SWH) for the whole period amounts to 9.9 m. The average long-term SWH for the ice-free period does not exceed 1.3 m. A significant linear trend shows an increase in the storm wave frequency for the period from 1979 to 2017. It is shown that trends in the storm activity of the Kara Sea are primarily regulated by the ice. Analysis of the extreme storm events showed that the Pareto distribution is in the best agreement with the data. However, the extreme events with an SWH more than 6‒7 m deviate from the Pareto distribution.


2019 ◽  
Vol 28 (1) ◽  
pp. 180-190
Author(s):  
Ireneusz Wlodarczyk

AbstractWe computed the impact solutions of the potentially dangerous Near Earth Asteroid (NEA) 2001 BB16 based on 47 optical observations from January 20.08316 UTC, 2001, through February 09.15740 UTC, 2016, and one radar observation from January 19.90347 UTC, 2016. We used two methods to sample the starting Line of Variation (LOV). First method, called thereafter LOV1, with the uniform sampling of the LOV parameter, out to LOV = 5 computing 3000 virtual asteroids (VAs) on both sides of the LOV, which gives 6001 VAs and propagated their orbits to JD2525000.5 TDT=February 12, 2201. We computed the non-gravitational parameterA2=(34.55±7.38)·10–14 au/d2 for nominal orbit of 2001 BB16 and possible impacts with the Earth until 2201. For potential impact in 2195 we find A2=20.0·10−14 au/d2. With a positive value of A2, 2001 BB16 can be prograde rotator. Moreover, we computed Lyapunov Time (LT) for 2001 BB16, which for all VAs, has a mean value of about 25 y. We showed that impact solutions, including the calculated probability of a possible collision of a 2001 BB16 asteroid with the Earth depends on how to calculate and take into account the appropriate gravitational model, including the number of perturbing massive asteroids. In some complicated cases, it may depend also on the number of clones calculated for a given sigma LOV1. The second method of computing the impact solutions, called thereafter LOV2, is based on a non-uniformly sampling of the LOV. We showed that different methods of sampling the LOV can give different impact solutions, but all computed dates of possible impacts of the asteroid 2001 BB16 with the Earth occur in accordance at the end of the 22nd century.


2019 ◽  
Vol 7 (2) ◽  
pp. T255-T263 ◽  
Author(s):  
Yanli Liu ◽  
Zhenchun Li ◽  
Guoquan Yang ◽  
Qiang Liu

The quality factor ([Formula: see text]) is an important parameter for measuring the attenuation of seismic waves. Reliable [Formula: see text] estimation and stable inverse [Formula: see text] filtering are expected to improve the resolution of seismic data and deep-layer energy. Many methods of estimating [Formula: see text] are based on an individual wavelet. However, it is difficult to extract the individual wavelet precisely from seismic reflection data. To avoid this problem, we have developed a method of directly estimating [Formula: see text] from reflection data. The core of the methodology is selecting the peak-frequency points to linear fit their logarithmic spectrum and time-frequency product. Then, we calculated [Formula: see text] according to the relationship between [Formula: see text] and the optimized slope. First, to get the peak frequency points at different times, we use the generalized S transform to produce the 2D high-precision time-frequency spectrum. According to the seismic wave attenuation mechanism, the logarithmic spectrum attenuates linearly with the product of frequency and time. Thus, the second step of the method is transforming a 2D spectrum into 1D by variable substitution. In the process of transformation, we only selected the peak frequency points to participate in the fitting process, which can reduce the impact of the interference on the spectrum. Third, we obtain the optimized slope by least-squares fitting. To demonstrate the reliability of our method, we applied it to a constant [Formula: see text] model and the real data of a work area. For the real data, we calculated the [Formula: see text] curve of the seismic trace near a well and we get the high-resolution section by using stable inverse [Formula: see text] filtering. The model and real data indicate that our method is effective and reliable for estimating the [Formula: see text] value.


Sign in / Sign up

Export Citation Format

Share Document