1968 ◽  
Vol 11 (1) ◽  
pp. 189-193 ◽  
Author(s):  
Lois Joan Sanders

A tongue pressure unit for measurement of lingual strength and patterns of tongue pressure is described. It consists of a force displacement transducer, a single channel, direct writing recording system, and a specially designed tongue pressure disk, head stabilizer, and pressure unit holder. Calibration with known weights indicated an essentially linear and consistent response. An evaluation of subject reliability in which 17 young adults were tested on two occasions revealed no significant difference in maximum pressure exerted during the two test trials. Suggestions for clinical and research use of the instrumentation are noted.


2021 ◽  
Vol 13 (13) ◽  
pp. 7174
Author(s):  
Massimo Rundo ◽  
Paolo Casoli ◽  
Antonio Lettini

In hydraulic components, nonlinearities are responsible for critical behaviors that make it difficult to realize a reliable mathematical model for numerical simulation. With particular reference to hydraulic spool valves, the viscous friction coefficient between the sliding and the fixed body is an unknown parameter that is normally set a posteriori in order to obtain a good agreement with the experimental data. In this paper, two different methodologies to characterize experimentally the viscous friction coefficient in a hydraulic component with spool are presented. The two approaches are significantly different and are both based on experimental tests; they were developed in two distinct laboratories in different periods of time and applied to the same flow compensator of a pump displacement control. One of the procedures was carried out at the Fluid Power Research Laboratory of the Politecnico di Torino, while the other approach was developed at the University of Parma. Both the proposed methods reached similar outcomes; moreover, neither method requires the installation of a spool displacement transducer that can significantly affect the results.


2016 ◽  
Vol 59 (8) ◽  
pp. 832-837 ◽  
Author(s):  
S. A. Matyunin ◽  
M. V. Stepanov ◽  
O. G. Babaev

2021 ◽  
Vol 23 (2) ◽  
pp. 57-63
Author(s):  
Marija Lazarevikj ◽  
◽  
Valentino Stojkovski ◽  
Viktor Iliev

In the technical practice, it is often necessary to measure or control the fluid flow rate in pipelines and channels. The velocity-area method requires a number of meters located at specified points in a suitable cross-section of closed conduits. Simultaneous measurements of local mean velocity with the meters are integrated over the gauging section to provide the discharge. In this paper, three approaches of this method are applied on a rectangular closed conduit to determine the air flow rate with integration techniques used to compute the discharge assume velocity distributions that closely approximate known laws, especially in the neighborhood of solid boundaries. For this purpose, meters for velocity were 7 Pitot tubes placed vertically in predefined measurement points covering the conduit height, and moved horizontally along the conduit width. The position of the Pitot tubes along the conduit width was monitored and controlled by a linear displacement transducer. Pressure is measured using digital sensors. The first technique for determination of air flow rate is on basis of fixed (stopping) measuring points across the conduit width as averaged values of local velocity, the second one is semi continual measurement of velocity profile by applying interpolation between the average local velocity on fixed (stopping) points and measured velocity in the movement between two positions, and the third is by continuously moving the Pitot tubes without stopping. The results of the three techniques are calculated and presented using different types of software. Considering the last technique, comparison of results is made applying different movement speeds of the Pitot tubes in order to examine their influence on the velocity profile.


1976 ◽  
Vol 41 (6) ◽  
pp. 942-945 ◽  
Author(s):  
A. Lambert ◽  
R. Eloy ◽  
J. F. Grenier

An extraluminal displacement transducer has been developed for simultaneously recording the mechanical activity in two perpendicular directions andthe electrical activity of the intestinal serosa. The length variations in two perpendicular directions were measured by means of strain gauges bounded on two pairs of lamellae embedded in a rigid stand. The electrical activity was recorded by means of four electrodes situated at the extremity of these lamellae. The electrical gauges of each pair of lamellae are connected to form a Wheatstone bridge. This device allows establishment of a correlation between the mechanical displacement of the intestinal wall serosa and electrical potentials by means of studies of long duration.


1995 ◽  
Vol 32 (2) ◽  
pp. 364-368 ◽  
Author(s):  
Robert G. Horvath

Loading tests were carried out on a model pile embedded in clay to examine the influence of rate of loading on the capacity of the pile. The pile was loaded to failure using constant rate of penetration (CRP), quick maintained loading (QML), and quick continuous loading (QCL) methods of loading. The QCL test models the Statnamic loading test, which has been recently developed in Canada. The CRP tests were used as a reference, and the results were normalized using the CRP test results. The durations of the QML and QCL tests varied from approximately 0.1 s to 17 min, which are significantly faster than normal loading rates. Applied loads and point load were measured using load cells, and top displacement was measured using a displacement transducer. The test results showed an increase in pile capacity with increased rate of loading. Damping was found to be significant for the QCL tests (duration = 0.1 s) and negligible for the QML tests (duration ≥ 10 s). Correcting the results of the QCL tests for damping, using the equilibrium point method developed for Statnamic testing, greatly improved the correlation of the QCL and QML test results. Key words : model piles, axial loading, loading rate, clay, laboratory study, test methods.


2010 ◽  
pp. 751-756 ◽  
Author(s):  
X Zhang ◽  
M Mavroulidou ◽  
M Gunn ◽  
Z Cabarkapa ◽  
J Sutton

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5904
Author(s):  
Bartosz Bednarz ◽  
Paweł Popielski ◽  
Rafał Sieńko ◽  
Tomasz Howiacki ◽  
Łukasz Bednarski

Due to the low costs of distributed optical fibre sensors (DFOS) and the possibility of their direct integration within layered composite members, DFOS technology has considerable potential in structural health monitoring of linear underground infrastructures. Often, it is challenging to truly simulate the actual ground conditions at all construction stages. Thus, reliable measurements are required to adjust the model and verify theoretical calculations. The article presents a new approach to monitor displacements and strains in Glass Fiber Reinforced Polymer (GFRP) collectors and pipelines using DFOS. The research verifies the effectiveness of the proposed monitoring solution for health monitoring of composite pipelines. Optical fibres were installed over the circumference of a composite tubular pipe, both on the internal and external surfaces, while loaded externally. Analysis of strain profiles allowed for calculating the actual displacements (shape) of the pipe within its cross-section plane using the Trapezoidal method. The accuracy of proposed approach was positively verified both with reference spot displacement transducer as well as numerical simulations using finite element method (FEM). DFOS could obtain a comprehensive view of structural deformations, including both strains and displacements under externally applied load. The knowledge gained during research will be ultimately used for renovating existing collectors.


Sign in / Sign up

Export Citation Format

Share Document