2018 ◽  
Author(s):  
Carolina R. Batista ◽  
Michelle Lim ◽  
Anne-Sophie Laramée ◽  
Faisal Abu-Sardanah ◽  
Li S. Xu ◽  
...  

AbstractPrecursor B-cell acute lymphoblastic leukemia (B-ALL) is associated with recurrent mutations that occur in cancer-initiating cells. There is a need to understand how spontaneous driver mutations influence clonal evolution in leukemia. The ETS-transcription factors PU.1 and Spi-B (encoded bySpi1andSpib) execute a critical role in B cell development and serve as complementary tumour suppressors by opposing the proliferative events mediated by IL-7R signaling. Here, we used a mouse model to conditionally deleteSpi1andSpibgenes in developing B cells. These mice developed B-ALL with a median time to euthanasia of 18 weeks. We performed RNA and whole-exome sequencing (WES) on leukemias isolated from Mb1-CreΔPB mice and identified single-nucleotide variants (SNVs) inJak1,Jak3andIkzf3genes, resulting in amino acid changes and in the gain of early stop-codons. JAK3 mutations resulted in amino acid substitutions located in the pseudo-kinase (R653H, V670A) and in the kinase (T844M) domains. Introduction of these mutations into wild-type pro-B cells conferred survival and proliferation advantages. We conclude that mutations in Janus kinases represent secondary drivers of leukemogenesis in the absence of Spi-B and PU.1 transcription factors. This mouse model represents an useful tool to study clonal evolution and tumour heterogeneity in B-ALL.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1240-1240
Author(s):  
Yosuke Tanaka ◽  
Masahito Kawazu ◽  
Satoshi Inoue ◽  
Shinya Kojima ◽  
Ueno Toshihide ◽  
...  

B-cell acute lymphoblastic leukemia (B-ALL) carrying DUX4 fusions is a novel cluster of B-ALL. DUX4 fusions are generated from insertions of wild- type (WT) DUX4, mainly into the IGH locus.The translocation replaces the 3′ end of the WT DUX4 coding region with a fragment of IGH or another gene, producing DUX4 out-of-frame fusion proteins devoid of the C terminus of WT DUX4. Usually, WT DUX4 is expressed in germ cells in testis, while its expression is epigenetically repressed in somatic tissues. Recently, it is identified to plays a critical role in transcriptional programs at the cleavage of human fertilized egg. In B-ALL, DUX4-IGH (D-I) is shown to be essential for leukemic transformation; however, little is known about the mechanistic basis. Here in this study, we extensively investigated the biological effects of D-I. First, we assessed the role of D-I using in vitro cell culture assays with human cord blood (CB) CD34+ cells. Introduction of D-I significantly caused retention of the CD34+ cell population compared with the mock vector, even though it failed to preferentially promote differentiation toward B cell lineage in vitro. To analyze the epigenetic and transcription control by D-I, we performed chromatin immunoprecipitation coupled with sequencing (ChIP-seq) using cell lines. In NALM6, a B-ALL cell line carrying D-I, a subset of D-I binding sites is accompanied by H3K4me3 and H3K27ac. We also assessed the histone modification status in Reh cells, a B-ALL cell line without DUX4 fusions, and observed that active histone marks are detected after binding of ectopically expressed D-I. Nevertheless, RNA sequencing of NALM6 and Reh overexpressing D-I showed minimal activation of genes near the D-I binding sites compared with those of NALM6 overexpressing WT DUX4. WT DUX4 is known to preferentially bind and activate repeat elements, especially human endogenous retroviral (HERV) elements in embryonic cells. NALM6 cells overexpressing WT DUX4 showed a drastic increase in the expression of HERV elements, while NALM6 and Reh overexpressing D-I did not. The expression of HERV elements was not altered by D-I in all the genomic regions, and we did not observe increased expression of HERV elements in patient leukemia samples with DUX4 fusions as well. Furthermore, Assay for Transposase Accessible Chromatin Sequencing (ATAC-seq) showed that chromatin status was not affected by the binding of D-I at the D-I bound HERV element, indicating that transcriptional and insulating ability of WT DUX4 in these areas are lost in D-I. Next, we performed ATAC-seq using NALM6 cells, comparing the status between pre- and post- D-I knockdown. Genomic areas with decreased ATAC signal after knockdown of D-I are enriched in D-I binding sites, and ATAC signal was increased when we compared the status between pre- and post- induction of D-I in Reh cells. Through the immunoprecipitation of endogenous D-I in NALM6 cells, we identified SWI/SNF complex elements as binding partners of D-I, further highlighting the chromatin opening ability of D-I. Motif analysis of the genomic areas with decreased ATAC signal after knockdown of D-I identified only DUX4 motif as a significant motif, suggesting that D-I is not apparently cooperating with other transcription factors. On the other hand, ATAC signal was increased in substantial genomic areas after knockdown of D-I, and motif analysis identified SPI1, TCF3, and EBF1 motifs. Integrated analysis of transcriptome data also supports the idea that transcription factors related to B cell differentiation are repressed in the presence of D-I, and derepressed after knock down of D-I. Despite the attenuated transcriptional activity, B-ALL carrying DUX4 fusions manifests a characteristic expression pattern. D-I binding sites are not always relevant to the gene areas with increased transcriptions. Therefore, we compared the genomic areas where ATAC signal is raised by D-I, and genes whose expression is affected by D-I. We identified genes with ATAC signal change both in NALM6 cells with D-I knockdown and in Reh cells with D-I induction. We identified D-I binding in some of these genes, and the pharmacological inhibition of one of the genes caused cell death in NALM6 cells in vitro and in vivo, suggesting that this gene is the genuine target of D-I. In summary, our study elucidated the detailed difference of function between WT DUX4 and DUX4-IGH, and demonstrated the ability of DUX4-IGH as a chromatin modulator. Disclosures No relevant conflicts of interest to declare.


Hematology ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 9-15
Author(s):  
Run-Qing Lu ◽  
Li-Xin Wu ◽  
Jing Zhang ◽  
Ya-Zhen Qin ◽  
Yan-Rong Liu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephanie L. Rellick ◽  
Gangqing Hu ◽  
Debra Piktel ◽  
Karen H. Martin ◽  
Werner J. Geldenhuys ◽  
...  

AbstractB-cell acute lymphoblastic leukemia (ALL) is characterized by accumulation of immature hematopoietic cells in the bone marrow, a well-established sanctuary site for leukemic cell survival during treatment. While standard of care treatment results in remission in most patients, a small population of patients will relapse, due to the presence of minimal residual disease (MRD) consisting of dormant, chemotherapy-resistant tumor cells. To interrogate this clinically relevant population of treatment refractory cells, we developed an in vitro cell model in which human ALL cells are grown in co-culture with human derived bone marrow stromal cells or osteoblasts. Within this co-culture, tumor cells are found in suspension, lightly attached to the top of the adherent cells, or buried under the adherent cells in a population that is phase dim (PD) by light microscopy. PD cells are dormant and chemotherapy-resistant, consistent with the population of cells that underlies MRD. In the current study, we characterized the transcriptional signature of PD cells by RNA-Seq, and these data were compared to a published expression data set derived from human MRD B-cell ALL patients. Our comparative analyses revealed that the PD cell population is markedly similar to the MRD expression patterns from the primary cells isolated from patients. We further identified genes and key signaling pathways that are common between the PD tumor cells from co-culture and patient derived MRD cells as potential therapeutic targets for future studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Asmaa M. Zahran ◽  
Azza Shibl ◽  
Amal Rayan ◽  
Mohamed Alaa Eldeen Hassan Mohamed ◽  
Amira M. M. Osman ◽  
...  

AbstractOur study aimed to evaluate the levels of MDSCs and Tregs in pediatric B-cell acute lymphoblastic leukemia (B-ALL), their relation to patients’ clinical and laboratory features, and the impact of these cells on the induction response. This study included 31 pediatric B-ALL patients and 27 healthy controls. All patients were treated according to the protocols of the modified St. Jude Children’s Research Hospital total therapy study XIIIB for ALL. Levels of MDSCs and Tregs were analyzed using flow cytometry. We observed a reduction in the levels of CD4 + T-cells and an increase in both the polymorphonuclear MDSCs (PMN-MDSCs) and Tregs. The frequencies of PMN-MDSCs and Tregs were directly related to the levels of peripheral and bone marrow blast cells and CD34 + cells. Complete postinduction remission was associated with reduced percentages of PMN-MDSCs and Tregs, with the level of PMN-MDCs in this subpopulation approaching that of healthy controls. PMN-MDSCs and Tregs jointly play a critical role in maintaining an immune-suppressive state suitable for B-ALL tumor progression. Thereby, they could be independent predictors of B-ALL progress, and finely targeting both PMN-MDSCs and Tregs may be a promising approach for the treatment of B-ALL.


Sign in / Sign up

Export Citation Format

Share Document