Theoretical calculations of the relative stability of Li6 isomers

1995 ◽  
pp. 235-236
Author(s):  
G. Gardet ◽  
F. Rogemond ◽  
H. Chermette
Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 704
Author(s):  
Sylwester Sobieraj ◽  
Grzegorz Sieklucki ◽  
Józef Gromba

The conversion of the electrical energy into the mechanical is usually realized by a motor, power electronics and cascade control. The relative stability (Θ-stability), i.e., the displacement of its eigenvalues of this system is analyzed for a drive with a BLDC motor. The influence of changing the basic parameters of the motor and power supply system on the drive operation is considered. 4th order closed-loop transfer-function of the cascade control is presented, where boundaries of the transfer-function coefficients are used. The cascade system which uncertainty of the resistance, inductance, flux and gain parameters is analyzed. Theoretical calculations for the cascade control, simulations and laboratory tests are included in the article.


2014 ◽  
Vol 28 (19) ◽  
pp. 1450121 ◽  
Author(s):  
Yassine Benallou ◽  
Belabbas Soudini ◽  
Kadda Amara

In this paper, we report a density functional study of the structural, electronic and pressure-induced solid–solid phase transitions of SrTiO 3. These first-principles calculations have been performed using the full potential linearized augmented plane wave method (FP-LAPW) within the generalized gradient approximation (GGA) developed by Perdew–Burke–Ernzerhor for solids (PBEsol). The calculated structural parameters like the lattice parameters, the bulk modulus B and their pressure derivative B ′ are used to analyze the relative stability and phase transitions under pressure of SrTiO 3. Calculations were done for the cubic (Pm-3m), tetragonal (I4/mcm, P4/mbm, P4mm) and orthorhombic (Cmcm, Pnma) structures where we found that the tetragonal I4/mcm phase is the most stable structure compared to the other structures at T = 0 K and P = 0 GPa. For the electronic properties calculations, the exchange and correlation effects were treated by the Tran–Blaha modified Becke–Johnson (TB-mBJ) potential to prevent the shortcoming of the underestimation of the energy gaps in both LDA and GGA approximations. The obtained results are compared to available experimental data and to other theoretical calculations.


2014 ◽  
Vol 70 (a1) ◽  
pp. C757-C757 ◽  
Author(s):  
Alexander Goncharov ◽  
Elissaios Stavrou ◽  
Sergey Lobanov ◽  
Artem Oganov ◽  
Valery Roisen ◽  
...  

Methane is one of the most abundant hydrocarbon molecules in the universe and is expected to be a significant part of the icy giant planets (Uranus and Neptune) and their satellites. Ethane is one of the most predictable products of chemical reactivity of methane at extreme pressures and temperatures. In spite of numerous experimental and theoretical studies, the structure and relative stability of these materials even at room temperature remains controversial. We have performed a combined experimental and theoretical study of both methane and ethane up at high pressures up to 120 GPa at 300 K using x-ray diffraction and Raman spectroscopy and the ab-initio evolutionary algorithm, respectively. In the case of methane we have successfully solved the structure of phase B by determining the space group and the positional parameters of carbon atoms, and by completing these results for the hydrogen positions using the theoretical calculations. The general structural behavior under pressure and the relation between phase B and phases A and pre-B will be also discussed. For ethane we have determined the crystallization point, for room temperature, at 1.7 GPa and also the low pressure crystal structure (Phase A). This crystal structure is orientationally disordered (plastic phase) and deviates from the known crystal structures for ethane at low temperatures. Moreover, a pressure induced phase transition has been indentified, for the first time, at 18 GPa to a monoclinic phase III, the structure of which is solved based on a good agreement of the experimental results and theoretical predictions. We have determined the equations of state of methane and ethane, which provides a solid basis for the discussion of their relative stability at high pressures.


1988 ◽  
Vol 102 ◽  
pp. 71-73
Author(s):  
E. Jannitti ◽  
P. Nicolosi ◽  
G. Tondello

AbstractThe photoabsorption spectra of the carbon ions have been obtained by using two laser-produced plasmas. The photoionization cross-section of the CV has been absolutely measured and the value at threshold, σ=(4.7±0.5) × 10−19cm2, as well as its behaviour at higher energies agrees quite well with the theoretical calculations.


Author(s):  
R. H. Morriss ◽  
J. D. C. Peng ◽  
C. D. Melvin

Although dynamical diffraction theory was modified for electrons by Bethe in 1928, relatively few calculations have been carried out because of computational difficulties. Even fewer attempts have been made to correlate experimental data with theoretical calculations. The experimental conditions are indeed stringent - not only is a knowledge of crystal perfection, morphology, and orientation necessary, but other factors such as specimen contamination are important and must be carefully controlled. The experimental method of fine-focus convergent-beam electron diffraction has been successfully applied by Goodman and Lehmpfuhl to single crystals of MgO containing light atoms and more recently by Lynch to single crystalline (111) gold films which contain heavy atoms. In both experiments intensity distributions were calculated using the multislice method of n-beam diffraction theory. In order to obtain reasonable accuracy Lynch found it necessary to include 139 beams in the calculations for gold with all but 43 corresponding to beams out of the [111] zone.


Author(s):  
H. S. Kim ◽  
S. S. Sheinin

The importance of image simulation in interpreting experimental lattice images is well established. Normally, in carrying out the required theoretical calculations, only zero order Laue zone reflections are taken into account. In this paper we assess the conditions for which this procedure is valid and indicate circumstances in which higher order Laue zone reflections may be important. Our work is based on an analysis of the requirements for obtaining structure images i.e. images directly related to the projected potential. In the considerations to follow, the Bloch wave formulation of the dynamical theory has been used.The intensity in a lattice image can be obtained from the total wave function at the image plane is given by: where ϕg(z) is the diffracted beam amplitide given by In these equations,the z direction is perpendicular to the entrance surface, g is a reciprocal lattice vector, the Cg(i) are Fourier coefficients in the expression for a Bloch wave, b(i), X(i) is the Bloch wave excitation coefficient, ϒ(i)=k(i)-K, k(i) is a Bloch wave vector, K is the electron wave vector after correction for the mean inner potential of the crystal, T(q) and D(q) are the transfer function and damping function respectively, q is a scattering vector and the summation is over i=l,N where N is the number of beams taken into account.


Sign in / Sign up

Export Citation Format

Share Document