The Use of Light-Sensitive Organic Semiconductors to Manipulate Neuronal Activity

Author(s):  
Duco Endeman ◽  
Paul Feyen ◽  
Diego Ghezzi ◽  
Maria Rosa Antognazza ◽  
Nicola Martino ◽  
...  
1993 ◽  
Author(s):  
Gloria E. Hoffman ◽  
◽  
Wen-Sen Lee ◽  
M. Susan Smith ◽  
Rula Abbud ◽  
...  

2004 ◽  
Author(s):  
A. A. Burikov ◽  
N. V. Svetlova ◽  
O. N. Chichinadze ◽  
O. I. Chuguev
Keyword(s):  

2006 ◽  
Author(s):  
G. J. Siegle ◽  
C. S. Carter ◽  
M. E. Thase
Keyword(s):  

1989 ◽  
Vol 28 (03) ◽  
pp. 92-94 ◽  
Author(s):  
C. Neumann ◽  
H. Baas ◽  
R. Hefner ◽  
G. Hör

The symptoms of Parkinson’s disease often begin on one side of the body and continue to do so as the disease progresses. First SPECT results in 4 patients with hemiparkinsonism using 99mTc-HMPAO as perfusion marker are reported. Three patients exhibited reduced tracer uptake in the contralateral basal ganglia One patient who was under therapy for 1 year, showed a different perfusion pattern with reduced uptake in both basal ganglia. These results might indicate reduced perfusion secondary to reduced striatal neuronal activity.


Author(s):  
Jonas Zimmermann ◽  
Pierre Megevand ◽  
Aude Yulzari ◽  
John Donoghue ◽  
Rees Cosgrove ◽  
...  

2019 ◽  
Author(s):  
Alexander Giovannitti ◽  
Reem B. Rashid ◽  
Quentin Thiburce ◽  
Bryan D. Paulsen ◽  
Camila Cendra ◽  
...  

<p>Avoiding faradaic side reactions during the operation of electrochemical devices is important to enhance the device stability, to achieve low power consumption, and to prevent the formation of reactive side‑products. This is particularly important for bioelectronic devices which are designed to operate in biological systems. While redox‑active materials based on conducting and semiconducting polymers represent an exciting class of materials for bioelectronic devices, they are susceptible to electrochemical side‑reactions with molecular oxygen during device operation. We show that this electrochemical side reaction yields hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), a reactive side‑product, which may be harmful to the local biological environment and may also accelerate device degradation. We report a design strategy for the development of redox-active organic semiconductors based on donor-acceptor copolymers that prevent the formation of H<sub>2</sub>O<sub>2</sub> during device operation. This study elucidates the previously overlooked side-reactions between redox-active conjugated polymers and molecular oxygen in electrochemical devices for bioelectronics, which is critical for the operation of electrolyte‑gated devices in application-relevant environments.</p>


2018 ◽  
Author(s):  
Weikun Zhu ◽  
Erfan Mohammadi ◽  
Ying Diao

Morphology modulation offers significant control over organic electronic device performance. However, morphology quantification has been rarely carried out via image analysis. In this work, we designed a MATLAB program to evaluate two key parameters describing morphology of small molecule semiconductor thin films: fractal dimension and film coverage. We then employ this program in a case study of meniscus-guided coating of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C<sub>8</sub>-BTBT) under various conditions to analyze a diverse and complex morphology set. The evolution of morphology in terms of fractal dimension and film coverage was studied as a function of coating speed. We discovered that combined fractal dimension and film coverage can quantitatively capture the key characteristics of C<sub>8</sub>-BTBT thin film morphology; change of these two parameters further inform morphology transition. Furthermore, fractal dimension could potentially shed light on thin film growth mechanisms.


2019 ◽  
Author(s):  
Simil Thomas ◽  
Hong Li ◽  
Raghunath R. Dasari ◽  
Austin Evans ◽  
William Dichtel ◽  
...  

<p>We have considered three two-dimensional (2D) π-conjugated polymer networks (i.e., covalent organic frameworks, COFs) materials based on pyrene, porphyrin, and zinc-porphyrin cores connected <i>via</i> diacetylenic linkers. Their electronic structures, investigated at the density functional theory global-hybrid level, are indicative of valence and conduction bands that have large widths, ranging between 1 and 2 eV. Using a molecular approach to derive the electronic couplings between adjacent core units and the electron-vibration couplings, the three π-conjugated 2D COFs are predicted to have ambipolar charge-transport characteristics with electron and hole mobilities in the range of 65-95 cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup>. Such predicted values rank these 2D COFs among the highest-mobility organic semiconductors. In addition, we have synthesized the zinc-porphyrin based 2D COF and carried out structural characterization via powder X-ray diffraction and surface area analysis, which demonstrates the feasability of these electroactive networks.</p>


Sign in / Sign up

Export Citation Format

Share Document