Parameter and Coupling Ratio Extraction for SPICE-Compatible MACRO Modeling of Source Side Injection (SSI) Flash Cell

Author(s):  
Sang-Pil SimPing Guoe ◽  
Al Kordesche ◽  
Ben Leee ◽  
Chun-Mai Liue ◽  
Kwyro Leee ◽  
...  
2004 ◽  
Vol 7 (1-2) ◽  
pp. 177-194 ◽  
Author(s):  
Véronique Favier ◽  
Carole Rouff ◽  
Régis Bigot ◽  
Marcel Berveiller ◽  
Marc Robellet

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 622
Author(s):  
Dongpeng Zhang ◽  
Anjiang Cai ◽  
Yulong Zhao ◽  
Tengjiang Hu

The V-shaped electro-thermal MEMS actuator model, with the human error factor taken into account, is presented in this paper through the cascading ANSYS simulation model and the Fuzzy mathematics calculation model. The Fuzzy mathematics calculation model introduces the human error factor into the MEMS actuator model by using the BP neural network, which effectively reduces the error between ANSYS simulation results and experimental results to less than 1%. Meanwhile, the V-shaped electro-thermal MEMS actuator model, with the human error factor included, will become more accurate as the database of the V-shaped electro-thermal actuator model grows.


2021 ◽  
Vol 112 (11-12) ◽  
pp. 3247-3261
Author(s):  
Zhengjian Wang ◽  
Xichun Luo ◽  
Haitao Liu ◽  
Fei Ding ◽  
Wenlong Chang ◽  
...  

AbstractIn recent years, research has begun to focus on the development of non-resonant elliptical vibration-assisted cutting (EVC) devices, because this technique offers good flexibility in manufacturing a wide range of periodic microstructures with different wavelengths and heights. However, existing non-resonant EVC devices for diamond turning can only operate at relatively low frequencies, which limits their machining efficiencies and attainable microstructures. This paper concerns the design and performance analysis of a non-resonant EVC device to overcome the challenge of low operational frequency. The structural design of the non-resonant EVC device was proposed, adopting the leaf spring flexure hinge (LSFH) and notch hinge prismatic joint (NHPJ) to mitigate the cross-axis coupling of the reciprocating displacements of the diamond tool and to combine them into an elliptical trajectory. Finite element analysis (FEA) using the mapped meshing method was performed to assist the determination of the key dimensional parameters of the flexure hinges in achieving high operational frequency while considering the cross-axis coupling and modal characteristics. The impact of the thickness of the LSFH on the sequence of the vibrational mode shape for the non-resonant EVC device was also quantitatively revealed in this study. Moreover, a reduction in the thickness of the LSFH can reduce the natural frequency of the non-resonant EVC device, thereby influencing the upper limit of its operational frequency. It was also found that a decrease in the neck thickness of the NHPJ can reduce the coupling ratio. Experimental tests were conducted to systematically evaluate the heat generation, cross-axis coupling, modal characteristics and diamond tool’s elliptical trajectory of a prototype of the designed device. The test results showed that it could operate at a high frequency of up to 5 kHz. The cross-axis coupling ratio and heat generation of the prototype are both at an acceptable level. The machining flexibility and accuracy of the device in generating microstructures of different wavelengths and heights through tuning operational frequency and input voltage have also been demonstrated via manufacturing the micro-dimple arrays and two-tier microstructured surfaces. High-precision microstructures were obtained with 1.26% and 10.67% machining errors in wavelength and height, respectively.


1952 ◽  
Vol 86 (5) ◽  
pp. 809-810 ◽  
Author(s):  
T. C. Wang ◽  
C. H. Townes ◽  
A. L. Schawlow ◽  
A. N. Holden

2011 ◽  
Vol 18 (5) ◽  
pp. 1757-1764 ◽  
Author(s):  
Tie-qiao Tang ◽  
Chuan-yao Li ◽  
Hai-jun Huang ◽  
Hua-yan Shang

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jan Riegelmeyer ◽  
Dan Wignall ◽  
Marta P. Estarellas ◽  
Irene D’Amico ◽  
Timothy P. Spiller

AbstractEntanglement is a crucial resource for quantum information processing, and so protocols to generate high-fidelity entangled states on various hardware platforms are in demand. While spin chains have been extensively studied to generate entanglement, graph structures also have such potential; however, only a few classes of graphs have been explored for this specific task. In this paper, we apply a particular coupling scheme involving two different coupling strengths to a graph of two interconnected $$3\times 3$$ 3 × 3 square graphs such that it effectively contains three defects. We show how this structure allows generation of a Bell state whose fidelity depends on the chosen coupling ratio. We apply partitioned graph theory in order to reduce the dimension of the graph and show that, using a reduced graph or a reduced chain, we can still simulate the same protocol with identical dynamics. Finally, we investigate how fabrication errors affect the entanglement generation protocol and how the different equivalent structures are affected, finding that for some specific coupling ratios they are extremely robust.


Author(s):  
Pouya Namaki ◽  
Nasser Masoumi ◽  
Mohammad-Reza Nezhad-Ahmadi ◽  
Safieddin Safavi-Naeini

Sign in / Sign up

Export Citation Format

Share Document