Stress Dependent Tc for Y-Ba-Cu-O System

1992 ◽  
pp. 467-470
Author(s):  
Kazuya Oguri ◽  
Takakazu Mochida ◽  
Kouji Ishizuka ◽  
Masahiko Imagawa ◽  
Kouichi Watanabe ◽  
...  
Keyword(s):  
2020 ◽  
Vol 27 (11) ◽  
pp. 1744-1763 ◽  
Author(s):  
Stefano Menini ◽  
Carla Iacobini ◽  
Claudia Blasetti Fantauzzi ◽  
Giuseppe Pugliese

Vascular complications are among the most serious manifestations of diabetes. Atherosclerosis is the main cause of reduced life quality and expectancy in diabetics, whereas diabetic nephropathy and retinopathy are the most common causes of end-stage renal disease and blindness. An effective therapeutic approach to prevent vascular complications should counteract the mechanisms of injury. Among them, the toxic effects of Advanced Glycation (AGEs) and Lipoxidation (ALEs) end-products are well-recognized contributors to these sequelae. L-carnosine (β-alanyl-Lhistidine) acts as a quencher of the AGE/ALE precursors Reactive Carbonyl Species (RCS), which are highly reactive aldehydes derived from oxidative and non-oxidative modifications of sugars and lipids. Consistently, L-carnosine was found to be effective in several disease models in which glyco/lipoxidation plays a central pathogenic role. Unfortunately, in humans, L-carnosine is rapidly inactivated by serum carnosinase. Therefore, the search for carnosinase-resistant derivatives of Lcarnosine represents a suitable strategy against carbonyl stress-dependent disorders, particularly diabetic vascular complications. In this review, we present and discuss available data on the efficacy of L-carnosine and its derivatives in preventing vascular complications in rodent models of diabetes and metabolic syndrome. We also discuss genetic findings providing evidence for the involvement of the carnosinase/L-carnosine system in the risk of developing diabetic nephropathy and for preferring the use of carnosinase-resistant compounds in human disease. The availability of therapeutic strategies capable to prevent both long-term glucose toxicity, resulting from insufficient glucoselowering therapy, and lipotoxicity may help reduce the clinical and economic burden of vascular complications of diabetes and related metabolic disorders.


2021 ◽  
Vol 255 ◽  
pp. 109013
Author(s):  
Xiaochun Wu ◽  
Shengying Zhang ◽  
Cuiqin Long ◽  
Zhen An ◽  
Xiaoyong Xing ◽  
...  

2020 ◽  
Vol 25 ◽  
pp. 100667
Author(s):  
Reena V. Kartha ◽  
Marcia R. Terluk ◽  
Roland Brown ◽  
Abigail Travis ◽  
Usha R. Mishra ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alyssa E. Johnson ◽  
Brian O. Orr ◽  
Richard D. Fetter ◽  
Armen J. Moughamian ◽  
Logan A. Primeaux ◽  
...  

AbstractMissense mutations in Valosin-Containing Protein (VCP) are linked to diverse degenerative diseases including IBMPFD, amyotrophic lateral sclerosis (ALS), muscular dystrophy and Parkinson’s disease. Here, we characterize a VCP-binding co-factor (SVIP) that specifically recruits VCP to lysosomes. SVIP is essential for lysosomal dynamic stability and autophagosomal–lysosomal fusion. SVIP mutations cause muscle wasting and neuromuscular degeneration while muscle-specific SVIP over-expression increases lysosomal abundance and is sufficient to extend lifespan in a context, stress-dependent manner. We also establish multiple links between SVIP and VCP-dependent disease in our Drosophila model system. A biochemical screen identifies a disease-causing VCP mutation that prevents SVIP binding. Conversely, over-expression of an SVIP mutation that prevents VCP binding is deleterious. Finally, we identify a human SVIP mutation and confirm the pathogenicity of this mutation in our Drosophila model. We propose a model for VCP disease based on the differential, co-factor-dependent recruitment of VCP to intracellular organelles.


Author(s):  
Wenzhuo Cao ◽  
Qinghua Lei ◽  
Wu Cai

AbstractThe deformation and permeability of coal are largely affected by the presence and distribution of natural fractures such as cleats and bedding planes with orthogonal and abutting characteristics, resulting in distinct hydromechanical responses to stress loading during coal mining processes. In this research, a two-dimensional (2D) fracture network is constructed based on a real coal cleat trace data collected from the Fukang mine area, China. Realistic multi-stage stress loading is designed to sequentially mimic an initial equilibrium phase and a mining-induced perturbation phase involving an increase of axial stress and a decrease of confining stress. The geomechanical and hydrological behaviour of the fractured coal under various stress loading conditions is modelled using a finite element model, which can simulate the deformation of coal matrix, the shearing and dilatancy of coal cleats, the variation of cleat aperture induced by combined effects of closure/opening, and shear and tensile-induced damage. The influence of different excavation stress paths and directions of mining is further investigated. The simulation results illustrate correlated variations among the shear-induced cleat dilation, damage in coal matrix, and equivalent permeability of the fractured coal. Model results are compared with results of previous work based on conventional approaches in which natural fracture networks are not explicitly represented. In particular, the numerical model reproduces the evolution of equivalent permeability under the competing influence of the effective stress perpendicular to cleats and shear-induced cleat dilation and associated damage. Model results also indicate that coal mining at low stress rates is conducive to the stability of surrounding coal seams, and that coal mining in parallel to cleat directions is desirable. The research findings of this paper have important implications for efficient and safe exploitation of coal and coalbed methane resources.


2008 ◽  
Vol 27 (6) ◽  
pp. 772-779 ◽  
Author(s):  
Marina Pervukhina ◽  
Dave Dewhurst ◽  
Boris Gurevich ◽  
Utpalendu Kuila ◽  
Tony Siggins ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xueping Chen ◽  
Jian Zhuang ◽  
Huanlei Huang ◽  
Yueheng Wu

AbstractThe purpose of this study is to compare the effect of the different physical factors on low-density lipoproteins (LDL) accumulation from flowing blood to the arterial wall of the left coronary arteries. The three-dimensional (3D) computational model of the left coronary arterial tree is reconstructed from a patient-specific computed tomography angiography (CTA) image. The endothelium of the coronary artery is represented by a shear stress dependent three-pore model. Fluid–structure interaction ($$FSI$$ FSI ) based numerical method is used to study the LDL transport from vascular lumen into the arterial wall. The results show that the high elastic property of the arterial wall decreases the complexity of the local flow field in the coronary bifurcation system. The places of high levels of LDL uptake coincide with the regions of low wall shear stress. In addition, hypertension promotes LDL uptake from flowing blood in the arterial wall, while the thickened arterial wall decreases this process. The present computer strategy combining the methods of coronary CTA image 3D reconstruction, $$FSI$$ FSI simulation, and three-pore modeling was illustrated to be effective on the simulation of the distribution and the uptake of LDL. This may have great potential for the early prediction of the local atherosclerosis lesion in the human left coronary artery.


Sign in / Sign up

Export Citation Format

Share Document