Nitrous Oxide Sources and Mitigation Strategies

Author(s):  
David Ussiri ◽  
Rattan Lal
2020 ◽  
Vol 82 (6) ◽  
pp. 1025-1030
Author(s):  
Maxence Plouviez ◽  
Benoit Guieysse

Abstract Microalgae can synthesise the ozone depleting pollutant and greenhouse gas nitrous oxide (N2O). Consequently, significant N2O emissions have been recorded during real wastewater treatment in high rate algal ponds (HRAPs). While data scarcity and variability prevent meaningful assessment, the magnitude reported (0.13–0.57% of the influent nitrogen load) is within the range reported by the Intergovernmental Panel on Climate Change (IPCC) for direct N2O emissions during centralised aerobic wastewater treatment (0.016–4.5% of the influent nitrogen load). Critically, the ability of microalgae to synthesise N2O challenges the IPCC's broad view that bacterial denitrification and nitrification are the only major cause of N2O emissions from wastewater plants and aquatic environments receiving nitrogen from wastewater effluents. Significant N2O emissions have indeed been repeatedly detected from eutrophic water bodies and wastewater discharge contributes to eutrophication via the release of nitrogen and phosphorus. Considering the complex interplays between nitrogen and phosphorus supply, microalgal growth, and microalgal N2O synthesis, further research must urgently seek to better quantify N2O emissions from microalgae-based wastewater systems and eutrophic ecosystems receiving wastewater. This future research will ultimately improve the prediction of N2O emissions from wastewater treatment in national inventories and may therefore affect the prioritisation of mitigation strategies.


2016 ◽  
Vol 56 (9) ◽  
pp. 1390 ◽  
Author(s):  
F. A. Phillips ◽  
S. G. Wiedemann ◽  
T. A. Naylor ◽  
E. J. McGahan ◽  
B. R. Warren ◽  
...  

Mitigation of agricultural greenhouse gas emissions is a target area for the Australian Government and the pork industry. The present study measured methane (CH4), nitrous oxide (N2O) and ammonia (NH3) from a deep-litter piggery and litter stockpile over two trials in southern New South Wales, to compare emissions from housing pigs on deep litter with those of pigs from conventional housing with uncovered anaerobic effluent-treatment ponds. Emissions were measured using open-path Fourier transform infrared spectrometry, in conjunction with a backward Lagrangian stochastic model. Manure excretion was determined by mass balance and emission factors (EFs) were developed to report emissions relative to volatile solids and nitrogen (N) input. Nitrous oxide emissions per animal unit (1 AU = 500 kg liveweight) from deep-litter sheds were negligible in winter, and 8.4 g/AU.day in summer. Ammonia emissions were 39.1 in winter and 52.2 g/AU.day in summer, while CH4 emissions were 16.1 and 21.6 g/AU.day in winter and summer respectively. Emission factors averaged from summer and winter emissions showed a CH4 conversion factor of 3.6%, an NH3-N EF of 10% and a N2O-N EF of 0.01 kg N2O-N/kg N excreted. For the litter stockpile, the simple average of summer and winter showed an EF for NH3-N of 14%, and a N2O-N EF of 0.02 kg N2O-N/kg-N of spent litter added to the stockpile. We observed a 66% and 80% decrease in emissions from the manure excreted in litter-based housing with litter stockpiling or without litter stockpiling, compared with conventional housing with an uncovered anaerobic effluent-treatment pond. This provides a sound basis for mitigation strategies that utilise litter-based housing as an alternative to conventional housing with uncovered anaerobic effluent-treatment ponds.


2015 ◽  
Vol 55 (12) ◽  
pp. 1465
Author(s):  
S. N. Jenkins ◽  
I. S. Waite ◽  
B. Mickan ◽  
L. K. Abbott

2016 ◽  
Vol 56 (9) ◽  
pp. 1404 ◽  
Author(s):  
S. G. Wiedemann ◽  
F. A. Phillips ◽  
T. A. Naylor ◽  
E. J. McGahan ◽  
O. B. Keane ◽  
...  

Greenhouse gas (GHG) and ammonia emissions are important environmental impacts from meat chicken houses. This study measured ammonia (NH3), nitrous oxide (N2O) and methane (CH4) in two trials from paired, commercial meat chicken houses using standard (control) and mitigation strategies. In Trial 1, emissions from houses with standard litter depth of 47 mm (LD47) or increased litter depth of 67 mm (LD67) were compared. When standardised to a 42-day-old bird, emissions were 11.9 g NH3/bird, 0.30 g N2O/bird and 0.16 g CH4/bird from the LD47 and 11.7 g NH3/bird, 0.69 g N2O/bird and 0.12 g CH4/bird from the LD67. Emissions per kilogram of manure N were 0.14 and 0.11 for NH3-N, 0.003 and 0.005 N2O-N and CH4 conversion factors were 0.08% and 0.05%. Total direct and indirect GHG emissions reported in carbon dioxide equivalents were found to be higher in LD67 in response to the elevated direct N2O emissions. Trial 2 compared the impact of reduced crude protein (CP19.8) and a standard diet (CP21.3) developed using least-cost ration formulation, on emissions. Emissions per bird for the CP19.8 diet were 7.7 g NH3/bird, 0.39 g N2O/bird and 0.14 g CH4/bird, while emissions from birds fed the CP21.3 diet were 10.6 g NH3/bird, 0.42 g N2O/bird and 0.19 g CH4/bird. Significant differences were observed only in the NH3 results, where emissions were reduced by 27% for the low-CP diet. Because of the low emission levels, total mitigation potential from indirect GHG emissions was relatively small in Trial 2, corresponding to 11 t carbon dioxide equivalents/year per million birds.


2020 ◽  
Vol 1 (3) ◽  
Author(s):  
Ahmedin Abdurehman Musa

Understanding the interaction of livestock production and climate change is currently the main issue in global warming. This paper reviews the contribution of livestock production in greenhouse gas emission and its mitigation strategies. The potential contribution of individual large ruminants are 200-500 litters of methane per day while small ruminants produces 20-40 litters of methane per day. The major greenhouse gas related to livestock production are methane and nitrous oxide which contribute approximately about 14.5% global GHG emissions. Limiting emissions from livestock, without compromising food security, is an important limit greenhouse gas emissions. The main choices for reducing greenhouse gas emission in livestock production are more related to improving animal production. Mitigating emission of CH4 by means of improved management of biogas and manure, reducing CH4 emission from enteric fermentation through improved efficiency and diet, husbandry as well as genetic management are some of strategies used in mitigating enteric emission of methane from livestock. The other one is mitigating emission of nitrous oxide through more efficient use of nitrous fertilizer, proper manure management and by using different feed additives.


2016 ◽  
Vol 96 (3) ◽  
pp. 306-331 ◽  
Author(s):  
Susantha Jayasundara ◽  
J.A.D. Ranga Niroshan Appuhamy ◽  
Ermias Kebreab ◽  
Claudia Wagner-Riddle

This review examined methane (CH4) and nitrous oxide (N2O) mitigation strategies for Canadian dairy farms. The primary focus was research conducted in Canada and cold climatic regions with similar dairy systems. Meta-analyses were conducted to assess the impact of a given strategy when sufficient data were available. Results indicated that options to reduce enteric CH4from dairy cows were increasing the dietary starch content and dietary lipid supplementation. Replacing barley or alfalfa silage with corn silage with higher starch content decreased enteric CH4per unit of milk by 6%. Increasing dietary lipids from 3% to 6% of dry matter (DM) reduced enteric CH4yield by 9%. Strategies such as nitrate supplementation and 3-nitrooxypropanol additive indicated potential for reducing enteric CH4by about 30% but require extensive research on toxicology and consumer acceptance. Strategies to reduce emissions from manure are anaerobic digestion, composting, solid–liquid separation, covering slurry storage and flaring CH4, and reducing methanogen inoculum by complete emptying of slurry storage at spring application. These strategies have potential to reduce emissions from manure by up to 50%. An integrated approach of combining strategies through diet and manure management is necessary for significant GHG mitigation and lowering carbon footprint of milk produced in Canada.


2012 ◽  
Vol 367 (1593) ◽  
pp. 1175-1185 ◽  
Author(s):  
U. Skiba ◽  
S. K. Jones ◽  
U. Dragosits ◽  
J. Drewer ◽  
D. Fowler ◽  
...  

Signatories of the Kyoto Protocol are obliged to submit annual accounts of their anthropogenic greenhouse gas emissions, which include nitrous oxide (N 2 O). Emissions from the sectors industry (3.8 Gg), energy (14.4 Gg), agriculture (86.8 Gg), wastewater (4.4 Gg), land use, land-use change and forestry (2.1 Gg) can be calculated by multiplying activity data (i.e. amount of fertilizer applied, animal numbers) with simple emission factors (Tier 1 approach), which are generally applied across wide geographical regions. The agricultural sector is the largest anthropogenic source of N 2 O in many countries and responsible for 75 per cent of UK N 2 O emissions. Microbial N 2 O production in nitrogen-fertilized soils (27.6 Gg), nitrogen-enriched waters (24.2 Gg) and manure storage systems (6.4 Gg) dominate agricultural emission budgets. For the agricultural sector, the Tier 1 emission factor approach is too simplistic to reflect local variations in climate, ecosystems and management, and is unable to take into account some of the mitigation strategies applied. This paper reviews deviations of observed emissions from those calculated using the simple emission factor approach for all anthropogenic sectors, briefly discusses the need to adopt specific emission factors that reflect regional variability in climate, soil type and management, and explains how bottom-up emission inventories can be verified by top-down modelling.


Author(s):  
Larissa Coelho Auto Gomes ◽  
Barbara Costa Pereira ◽  
Renato Pereira Ribeiro ◽  
Jaime Lopes da Mota Oliveira

Biological wastewater treatment processes with biological nitrogen removal are potential sources of nitrous oxide (N2O) emissions. It is important to expand knowledge on the controlling factors associated with N2O production, in order to propose emission mitigation strategies. This study therefore sought to identify the parameters that favor nitrite (NO2-) accumulation and its influence on N2O production and emission in an anaerobic/aerobic/anoxic/aerobic sequencing batch reactor with biological nitrogen removal. Even with controlled dissolved oxygen concentrations and oxidation reduction potential, the first aerobic phase promoted only partial nitrification, resulting in NO2- build-up (ranging from 29 to 57%) and consequent N2O generation. The NO2- was not fully consumed in the subsequent anoxic phase, leading to even greater N2O production through partial denitrification. A direct relationship was observed between NO2- accumulation in these phases and N2O production. In the first aerobic phase, the N2O/NO2- ratio varied between 0.5 to 8.5%, while in the anoxic one values ranged between 8.3 and 22.7%. Higher N2O production was therefore noted during the anoxic phase compared to the first aerobic phase. As a result, the highest N2O fluxes occurred in the second aerobic phase, ranging from 706 to 2416 mg N m-2 h-1, as soon as aeration was triggered. Complete nitrification and denitrification promotion in this system was proven to be the key factor to avoid NO2- build-up and, consequently, N2O emissions.


2013 ◽  
Vol 22 (1) ◽  
pp. 93-107 ◽  
Author(s):  
Tom Misselbrook ◽  
Agustin Del Prado ◽  
David Chadwick

Modern dairy production is inevitably associated with impacts to the environment and the challenge for the industry today is to increase production to meet growing global demand while minimising emissions to the environment. Negative environmental impacts include gaseous emissions to the atmosphere, of ammonia from livestock manure and fertiliser use, of methane from enteric fermentation and manure management, and of nitrous oxide from nitrogen applications to soils and from manure management. Emissions to water include nitrate, ammonium, phosphorus, sediment, pathogens and organic matter, deriving from nutrient applications to forage crops and/or the management of grazing livestock. This paper reviews the sources and impacts of such emissions in the context of a forage-based dairy farm and considers a number of potential mitigation strategies, giving some examples using the farm-scale model SIMSDAIRY. Most of the mitigation measures discussed are associated with systemic improvements in the efficiency of production in dairy systems. Important examples of mitigations include: improvements to dairy herd fertility, that can reduce methane and ammonia emissions by up to 24 and 17%, respectively; diet modification such as the use of high sugar grasses for grazing, which are associated with reductions in cattle N excretion of up to 20% (and therefore lower N losses to the environment) and potentially lower methane emissions, or reducing the crude protein content of the dairy cow diet through use of maize silage to reduce N excretion and methane emissions; the use of nitrification inhibitors with fertiliser and slurry applications to reduce nitrous oxide emissions and nitrate leaching by up to 50%. Much can also be achieved through attention to the quantity, timing and method of application of nutrients to forage crops and utilising advances made through genetic improvements.


Sign in / Sign up

Export Citation Format

Share Document