The Interaction of MHC Antigens with the Plasma Membrane and the Other Cellular Components

1982 ◽  
pp. 53-83 ◽  
Author(s):  
Matthew F. Mescher
1984 ◽  
Vol 98 (3) ◽  
pp. 904-910 ◽  
Author(s):  
W J Deery ◽  
A R Means ◽  
B R Brinkley

A Triton X-100-lysed cell system has been used to identify calmodulin on the cytoskeleton of 3T3 and transformed SV3T3 cells. By indirect immunofluorescence, calmodulin was found to be associated with both the cytoplasmic microtubule complex and the centrosomes. A number of cytoplasmic microtubules more resistant to disassembly upon either cold (0-4 degrees C) or hypotonic treatment, as well as following dilution have been identified. Most of the stable microtubules appeared to be associated with the centrosome at one end and with the plasma membrane at the other end. These microtubules could be induced to depolymerize, however, by micromolar Ca++ concentrations. These data suggest that, by interacting directly with the microtubule, calmodulin may influence microtubule assembly and ensure the Ca++-sensitivity of both mitotic and cytoplasmic microtubules.


1989 ◽  
Vol 108 (2) ◽  
pp. 401-411 ◽  
Author(s):  
J Heuser

Reducing the internal pH of cultured cells by several different protocols that block endocytosis is found to alter the structure of clathrin lattices on the inside of the plasma membrane. Lattices curve inward until they become almost spherical yet remain stubbornly attached to the membrane. Also, the lattices bloom empty "microcages" of clathrin around their edges. Correspondingly, broken-open cells bathed in acidified media demonstrate similar changes in clathrin lattices. Acidification accentuates the normal tendency of lattices to round up in vitro and also stimulates them to nucleate microcage formation from pure solutions of clathrin. On the other hand, several conditions that also inhibit endocytosis have been found to create, instead of unusually curved clathrin lattices with extraneous microcages, a preponderance of unusually flat lattices. These treatments include pH-"clamping" cells at neutrality with nigericin, swelling cells with hypotonic media, and sticking cells to the surface of a culture dish with soluble polylysine. Again, the unusually flat lattices in such cells display a tendency to round up and to nucleate clathrin microcage formation during subsequent in vitro acidification. This indicates that regardless of the initial curvature of clathrin lattices, they all display an ability to grow and increase their curvature in vitro, and this is enhanced by lowering ambient pH. Possibly, clathrin lattice growth and curvature in vivo may also be stimulated by a local drop in pH around clusters of membrane receptors.


2005 ◽  
Vol 16 (9) ◽  
pp. 4231-4242 ◽  
Author(s):  
Katy Janvier ◽  
Juan S. Bonifacino

The limiting membrane of the lysosome contains a group of transmembrane glycoproteins named lysosome-associated membrane proteins (Lamps). These proteins are targeted to lysosomes by virtue of tyrosine-based sorting signals in their cytosolic tails. Four adaptor protein (AP) complexes, AP-1, AP-2, AP-3, and AP-4, interact with such signals and are therefore candidates for mediating sorting of the Lamps to lysosomes. However, the role of these complexes and of the coat protein, clathrin, in sorting of the Lamps in vivo has either not been addressed or remains controversial. We have used RNA interference to show that AP-2 and clathrin—and to a lesser extent the other AP complexes—are required for efficient delivery of the Lamps to lysosomes. Because AP-2 is exclusively associated with plasma membrane clathrin coats, our observations imply that a significant population of Lamps traffic via the plasma membrane en route to lysosomes.


1962 ◽  
Vol 14 (2) ◽  
pp. 193-205 ◽  
Author(s):  
Toshio Nagano

The kinetic apparatus, the acrosome and associated structures, and the manchette of the spermatid of the domestic chicken have been studied with the electron microscope. The basic structural features of the two centrioles do not change during spermiogenesis, but there is a change in orientation and length. The proximal centriole is situated in a groove at the edge of the nucleus and oriented normal to the long axis of the nucleus and at right angles to the elongate distal centriole. The tail filaments appear to originate from the distal centriole. The plasma membrane is invaginated along the tail filaments. A dense structure which appears at the deep reflection of the plasma membrane is identified as the ring. The fine structure of the ring has no resemblance to that of a centriole and there is no evidence that it is derived from or related to the centrioles. The tail of the spermatid contains nine peripheral pairs and one central pair of tubular filaments. The two members of each pair of peripheral filaments differ in density and in shape: one is dense and circular, and the other is light and semilunar in cross-section. The dense filaments have processes. A manchette consisting of fine tubules appears in the cytoplasm of the older spermatid along the nucleus, neck region, and proximal segment of the tail. The acrosome is spherical in young spermatids and becomes crescentic and, finally, U-shaped as spermiogenesis proceeds. A dense granule is observed in the cytoplasm between acrosome and nucleus. This granule later becomes a dense rod which is interpreted as the perforatorium.


2017 ◽  
Vol 91 (10) ◽  
Author(s):  
Xianfeng Zhang ◽  
Tao Zhou ◽  
Jie Yang ◽  
Yumei Lin ◽  
Jing Shi ◽  
...  

ABSTRACT Among the five serine incorporator (SERINC) family members, SERINC5 (Ser5) was reported to strongly inhibit HIV-1 replication, which is counteracted by Nef. Ser5 produces 5 alternatively spliced isoforms: Ser5-001 has 10 putative transmembrane domains, whereas Ser5-004, -005, -008a, and -008b do not have the last one. Here, we confirmed the strong Ser5 anti-HIV-1 activity and investigated its isoforms' expression and antiviral activities. It was found that Ser5-001 transcripts were detected at least 10-fold more than the other isoforms by real-time quantitative PCR. When Ser5-001 and its two isoforms Ser5-005 and Ser5-008a were expressed from the same mammalian expression vector, only Ser5-001 was stably expressed, whereas the others were poorly expressed due to rapid degradation. In addition, unlike the other isoforms, which are located mainly in the cytoplasm, Ser5-001 is localized primarily to the plasma membrane. To map the critical determinant, Ser5 mutants bearing C-terminal deletions were created. It was found that the 10th transmembrane domain is required for Ser5 stable expression and plasma membrane localization. As expected, only Ser5-001 strongly inhibits HIV-1 infectivity, whereas the other Ser5 isoforms and mutants that do not have the 10th transmembrane domain show very poor activity. It was also observed that the Nef counteractive activity could be easily saturated by Ser5 overexpression. Thus, we conclude that Ser5-001 is the predominant antiviral isoform that restricts HIV-1, and the 10th transmembrane domain plays a critical role in this process by regulating its protein stability and plasma membrane targeting. IMPORTANCE Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) express a small protein, Nef, to enhance viral pathogenesis in vivo. Nef has an important in vitro function, which is to make virus particles more infectious, but the mechanism has been unclear. Recently, Nef was reported to counteract a novel anti-HIV host protein, SERINC5 (Ser5). Ser5 has five alternatively spliced isoforms, Ser5-001, -004, -005, -008a, and -008b, and only Ser5-001 has an extra C-terminal transmembrane domain. We now show that the Ser5-001 transcripts are produced at least 10-fold more than the others, and only Ser5-001 produces stable proteins that are targeted to the plasma membrane. Importantly, only Ser5-001 shows strong anti-HIV-1 activity. We further demonstrate that the extra transmembrane domain is required for Ser5 stable expression and plasma membrane localization. These results suggest that plasma membrane localization is required for Ser5 antiviral activity, and Ser5-001 is the predominant isoform that contributes to the activity.


Recent studies of axonal transport indicate that cytoskeletal proteins are assembled into polymers in the neuron cell body and that these polymers move from the cell body toward the end of the axon. On the other hand, membranous elements appear to be inserted into the axonal plasma membrane preferentially at the end of the axon. These new observations are explored in relation to our current understanding of axonal elongation.


1966 ◽  
Vol 45 (2) ◽  
pp. 251-267
Author(s):  
M. S. BINGLEY

1. Amoebae can be penetrated by microelectrodes at either end. One records voltage and the other supplies alternating current. 2. Step-like increases in alternating voltage superimposed on potentials recorded by the voltage electrode when in either the pseudopod or rear region demonstrate that low potentials recorded from a pseudopod and high ones from the rear region exist across a discrete impedance barrier. The only structure so far shown to fulfil this function is the plasma membrane. 3. A resistance inserted in the earth path monitors current flowing through the system and confirms observations made when recording with single electrodes that there is a reduction of electrode resistance when the cell is entered. 4. Pronounced depolarization in the rear region is shown when the current-carrying electrode penetrates the pseudopod, but not vice versa. 5. Morphological changes associated with membrane potential reversal are illustrated. 6. Consideration is given to the role of step-like potential changes in movement.


1989 ◽  
Vol 94 (3) ◽  
pp. 585-591
Author(s):  
A. Koffer ◽  
B.D. Gomperts

This study addresses the question of the role of cytoplasmic proteins in exocytosis from permeabilised rat mast cells. We have used two different methods of cell permeabilisation (ATP4- and streptolysin O) to regulate the size of the plasma membrane lesions, and thus to dictate the rate and extent of efflux of the cytosolic proteins, and compared the secretory response of the two preparations. We report evidence for the existence of two factors present in the cytosol, which affect the exocytotic mechanism in opposing manners. One of these is required for the maintenance of cell responsiveness; it is retained for more than 120 min by ATP4- -permeabilised cells but lost within 60 min from cells permeabilised by streptolysin O. The other factor, which leaks immediately from cells treated from streptolysin O, but only gradually from cells treated with ATP4-, has the effect of suppressing the affinity for both Ca2+ and guanine nucleotide in the exocytotic reaction.


1976 ◽  
Vol 20 (3) ◽  
pp. 619-638
Author(s):  
S.L. Tamm ◽  
S. Tamm

We previously described a remarkable type of cell motility that provided direct, visual evidence for the fluid nature of cell membranes. The movement involved continual, unidirectional rotation of one part of a protozoan, including the plasma membrane and cytoplasmic organelles, in relation to a neighbouring part. The cell membrane in the ‘shear zone’ appeared continuous with that of the rest of the cell. The rotary motor consisted, at least in part, of a non-contractile, microtubular axostyle which extended centrally through the cell. The protozoan was a devescovinid flagellate found in the hindgut of a Florida termite. In this paper, we have confirmed earlier reports of this type of motility in other kinds of devescovinids from Australian termites. By demonstrating continuity of the plasma membrane in the shear zone of the Australian devescovinids as well, we have obtained additional examples that provide direct, visual evidence for fluid membranes. A comparative analysis of rotational motility in various devescovinids revealed 2 different kinds of rotary mechanisms. Hyperdevescovina probably have an internal motor, in which one part of the cell exerts forces against another part, as in the Florida termite devescovinid. Devescovina species, on the other hand, have an external motor, in which flagellar and/or papillar movements exert forces against the surrounding medium. The structure of the axostyle in different devescovinids was compared, and its role in rotational motility discussed with respect to the behavioural data.


Sign in / Sign up

Export Citation Format

Share Document