A Camera for Measuring Density, Size and Velocity of Rising Air Bubbles and Water Velocity in a Bubble Plume

Author(s):  
Christoph Hugi ◽  
Andreas Mueller

The process of calming waves by injecting air bubbles beneath the surface has been known to civil engineers for nearly 50 years. It has been little used for its results have been erratic, its method of working was unknown and its effect could not be predicted. The investigation described in this paper has shown that the surface currents set up by air injection, and the distribution of the water velocity within the currents, can be matched by currents set up by water jets, and that the two currents so matched have almost the same wave-damping effect whether they are set up by water jets or by air. It is concluded that the bubbles as such have at most a very small effect on the wave motion. It is found that waves of small amplitude are stopped in the way predicted theoretically, but that as the amplitude increases the surface current necessary to stop waves of a given length increases.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Tomomi Uchiyama ◽  
Shunsuke Sasaki

This study experimentally investigates the interaction between rising bubbles and swirling water flow imposed around the central (vertical) axis of a bubble plume in a cylindrical water tank. Small air bubbles are successively released from the bottom of the tank to generate a bubble plume, and a stirring disc at the bottom of the tank is rotated to impose a swirling water flow around the central axis of the bubble plume. The bubbles disperse further with the increasing rotational speedωof the stirring disc. Some bubbles shift toward the central axis of the swirling flow whenωis high. The nondimensional swirling velocity of water reduces with increasing bubble flow rate whenωis lower than a certain value. However, it is less affected by the bubbles whenωis higher. The precessional amplitude for the upper end of the vortex core increases due to the presence of the bubbles. With increasingω, the nondimensional precessional velocity decreases, and the bubble effect also reduces.


2019 ◽  
Vol 865 ◽  
pp. 993-1041 ◽  
Author(s):  
Chris C. K. Lai ◽  
Scott A. Socolofsky

We present the turbulent kinetic energy (t.k.e.) budget of a dilute bubble plume in its asymptotic state. The budget is derived from an experimental dataset of bubble plumes formed inside an unstratified water tank. The experiments cover both the adjustment phase and asymptotic state of the plume. The diameters $d$ of air bubbles are in the range 1–4 mm and the air void fraction $\unicode[STIX]{x1D6FC}_{g}$ is between 0.7 % and 1.8 %. We measured the three components of the instantaneous liquid velocity vector with a profiling acoustic Doppler velocimeter. From the experiments, we found the following inside the heterogeneous bubble core of the plume: (i) the probability density functions of the standardized liquid fluctuations are very similar to those of homogeneous bubble swarms rising with and without background liquid turbulence; (ii) the characteristic temporal frequency $f_{cwi}$ at which bubbles inject t.k.e. into the liquid agrees with the prediction $f_{cwi}=0.14u_{s}/d$ observed and theoretically derived for homogeneous bubble swarms ($u_{s}$ is the bubble slip velocity); (iii) the liquid turbulence is anisotropic with the ratio of turbulence intensities between the vertical and horizontal components in the range 1.9–2.1; (iv) the t.k.e. production by air bubbles is much larger than that by liquid mean shear; and (v) an increasing fraction of the available work done by bubbles is deposited into liquid turbulence as one moves away from the plume centreline. Together with the existing knowledge of homogeneous bubble swarms, our results of the heterogeneous bubble plume support the view that millimetre-sized bubbles create specific patterns of liquid fluctuations that are insensitive to flow conditions and can therefore be possibly modelled by a universal form.


Shore & Beach ◽  
2019 ◽  
pp. 3-14 ◽  
Author(s):  
Joshua Davis ◽  
Diana Mitsova ◽  
Tynon Briggs ◽  
Tiffany Briggs

Wave forcing from hurricanes, nor’easters, and energetic storms can cause erosion of the berm and beach face resulting in increased vulnerability of dunes and coastal infrastructure. LIDAR or other surveying techniques have quantified post-event morphology, but there is a lack of in situ hydrodynamic and morphodynamic measurements during extreme storm events. Two field studies were conducted in March 2018 and April 2019 at Bethany Beach, Delaware, where in situ hydrodynamic and morphodynamic measurements were made during a nor’easter (Nor’easter Riley) and an energetic storm (Easter Eve Storm). An array of sensors to measure water velocity, water depth, water elevation and bed elevation were mounted to scaffold pipes and deployed in a single cross-shore transect. Water velocity was measured using an electro-magnetic current meter while water and bed elevations were measured using an acoustic distance meter along with an algorithm to differentiate between the water and bed during swash processes. GPS profiles of the beach face were measured during every day-time low tide throughout the storm events. Both accretion and erosion were measured at different cross-shore positions and at different times during the storm events. Morphodynamic change along the back-beach was found to be related to berm erosion, suggesting an important morphologic feedback mechanism. Accumulated wave energy and wave energy flux per unit area between Nor’easter Riley and a recent mid-Atlantic hurricane (Hurricane Dorian) were calculated and compared. Coastal Observations: JALBTCX/NCMP emergency-response airborne Lidar coastal mapping & quick response data products for 2016/2017/2018 hurricane impact assessments


2005 ◽  
Vol 54 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Hengameh Moshfeghi ◽  
Amir Etemad-Shahidi ◽  
Jorg Imberger
Keyword(s):  

2001 ◽  
Vol 1 (1) ◽  
pp. 17-23 ◽  
Author(s):  
E. Jungo ◽  
Petra M. Visser ◽  
Jasper Stroom ◽  
Luuc R. Mur

The problem of Lake Nieuwe Meer (area = 1.3 km2, max. depth 30 m, Ptot = 500 mg/m3) was extensive growth of Microcystis with disturbing scum forming. Since 1993 the lake has been artificially mixed in summer by a bubble plume installation. The result is quite successful since the mass of Microcystis is up to 20 times lower than in the years before mixing and no scum is present any more. The study in Lake Nieuwe Meer showed a shift from cyanobacterial dominance (mainly Microcystis) to flagellates, green-algae and diatoms when artificial mixing was applied. Total phosphorus and nitrogen concentrations did not change as a result of mixing and had apparently no effect on the shift in the phytoplankton composition. The chlorophyll-a concentration was much lower in the mixed lake as a result of dilution. The total algae biomass decreased. The transparency did not improve. The total heat energy of the lake is slightly higher than before mixing but still remains in the range of annual fluctuation. The temperature on the surface is approximately 2°C lower. In the whole water-body oxygen was always higher than 5 mg/l. Living space for fish is therefore wider. The installation in Lake Nieuwe Meer consists of flexible pipes near the sediment, built in a way to prevent sediment erosion and transport into the water. There are no constructions in the water-body. All mechanical parts are on land. The layout of the installation is shown in Fig. 1. Installed compressor energy is 85 kW. This is equivalent to an upper middle-class motor-car. The design was made specifically for this problem. It is based on the physical data of the algae and the plant. It would be beneficial to use this 7 year's experience for further applications e.g. elimination of toxic algae in drinking-water reservoirs.


Sign in / Sign up

Export Citation Format

Share Document