The turbulent kinetic energy budget in a bubble plume

2019 ◽  
Vol 865 ◽  
pp. 993-1041 ◽  
Author(s):  
Chris C. K. Lai ◽  
Scott A. Socolofsky

We present the turbulent kinetic energy (t.k.e.) budget of a dilute bubble plume in its asymptotic state. The budget is derived from an experimental dataset of bubble plumes formed inside an unstratified water tank. The experiments cover both the adjustment phase and asymptotic state of the plume. The diameters $d$ of air bubbles are in the range 1–4 mm and the air void fraction $\unicode[STIX]{x1D6FC}_{g}$ is between 0.7 % and 1.8 %. We measured the three components of the instantaneous liquid velocity vector with a profiling acoustic Doppler velocimeter. From the experiments, we found the following inside the heterogeneous bubble core of the plume: (i) the probability density functions of the standardized liquid fluctuations are very similar to those of homogeneous bubble swarms rising with and without background liquid turbulence; (ii) the characteristic temporal frequency $f_{cwi}$ at which bubbles inject t.k.e. into the liquid agrees with the prediction $f_{cwi}=0.14u_{s}/d$ observed and theoretically derived for homogeneous bubble swarms ($u_{s}$ is the bubble slip velocity); (iii) the liquid turbulence is anisotropic with the ratio of turbulence intensities between the vertical and horizontal components in the range 1.9–2.1; (iv) the t.k.e. production by air bubbles is much larger than that by liquid mean shear; and (v) an increasing fraction of the available work done by bubbles is deposited into liquid turbulence as one moves away from the plume centreline. Together with the existing knowledge of homogeneous bubble swarms, our results of the heterogeneous bubble plume support the view that millimetre-sized bubbles create specific patterns of liquid fluctuations that are insensitive to flow conditions and can therefore be possibly modelled by a universal form.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Tomomi Uchiyama ◽  
Shunsuke Sasaki

This study experimentally investigates the interaction between rising bubbles and swirling water flow imposed around the central (vertical) axis of a bubble plume in a cylindrical water tank. Small air bubbles are successively released from the bottom of the tank to generate a bubble plume, and a stirring disc at the bottom of the tank is rotated to impose a swirling water flow around the central axis of the bubble plume. The bubbles disperse further with the increasing rotational speedωof the stirring disc. Some bubbles shift toward the central axis of the swirling flow whenωis high. The nondimensional swirling velocity of water reduces with increasing bubble flow rate whenωis lower than a certain value. However, it is less affected by the bubbles whenωis higher. The precessional amplitude for the upper end of the vortex core increases due to the presence of the bubbles. With increasingω, the nondimensional precessional velocity decreases, and the bubble effect also reduces.


Author(s):  
Xi Zhang ◽  
Ping Zhu ◽  
Shuaichao Li ◽  
Wenyuan Fan ◽  
Jingyan Lian

Abstract A numerical simulation was performed to study the hydrodynamics of micro-bubble swarm in bubble column with polyacrylamide (PAM) aqueous solution by using computational fluid dynamics coupled with population balance models (CFD-PBM). By considering rheological characteristics of fluid, this approach was able to accurately predict the features of bubble swarm, and validated by comparing with the experimental results. The gas holdup, turbulent kinetic energy and liquid velocity of bubble column have been elucidated by considering the influences of superficial gas velocity and gas distributor size respectively. The results show that with the rise of the superficial gas velocity, the gas holdup and its peak width increase significantly. Especially, the curve peak corresponding to high gas velocity tends to drift obviously toward the right side. Except for the occurrence of a smooth holdup peak at the column center under the condition of the moderate distributor size, the gas holdups for the small and large distributor sizes become flat in the radial direction respectively. The distribution of turbulent kinetic energy presents an increasingly asymmetrical feature in the radial direction and also its variation amplitude enhances obviously with the rise of gas velocity. The increase in gas distributor size can enhance markedly turbulent kinetic energy as well as its overall influenced width. At the low and moderate superficial gas velocity, the curves of the liquid velocity in radial direction present the Gaussian distributions, whereas the perfect distribution always is broken in the symmetry for high gas velocity. Both liquid velocities around the bubble column center and the ones near both column walls go up consistently with the gas distributor size, especially near the walls at the large distributor size condition.


2017 ◽  
Vol 835 ◽  
pp. 217-251 ◽  
Author(s):  
Blair A. Johnson ◽  
Edwin A. Cowen

We perform an experimental study to investigate the turbulent boundary layer above a stationary solid glass bed in the absence of mean shear. High Reynolds number $(Re_{\unicode[STIX]{x1D706}}\sim 300)$ horizontally homogeneous isotropic turbulence is generated via randomly actuated synthetic jet arrays (RASJA – Variano & Cowen J. Fluid Mech. vol. 604, 2008, pp. 1–32). Each of the arrays is controlled by a spatio-temporally varying algorithm, which in turn minimizes the formation of secondary mean flows. One array consists of an $8\times 8$ grid of jets, while the other is a $16\times 16$ array. Particle image velocimetry measurements are used to study the isotropic turbulent region and the boundary layer formed beneath as the turbulence encounters a stationary wall. The flow is characterized with statistical metrics including the mean flow and turbulent velocities, turbulent kinetic energy, integral scales and the turbulent kinetic energy transport equation, which includes the energy dissipation rate, production and turbulent transport. The empirical constant in the Tennekes (J. Fluid Mech. vol. 67, 1975, pp. 561–567) model of Eulerian frequency spectra is calculated based on the dissipation results and temporal frequency spectra from acoustic Doppler velocimetry measurements. We compare our results to prior literature that addresses mean shear free turbulent boundary layer characterizations via grid-stirred tank experiments, moving-bed experiments, rapid-distortion theory and direct numerical simulations in a forced turbulent box. By varying the operational parameters of the randomly actuated synthetic jet array, we also find that we are able to control the turbulence levels, including integral length scales and dissipation rates, by changing the mean on-times in the jet algorithm.


1972 ◽  
Vol 53 (2) ◽  
pp. 217-226 ◽  
Author(s):  
J. S. Turner

When similarity solutions are used to describe convective plumes or thermals, there is always found to be a discrepancy between the work done by buoyancy forces and the kinetic energy of mean motion. It is the main purpose of this paper to set down the ratio of these quantities for a wide variety of forms of buoyant elements and environmental stabilities. For consistency, the remaining fraction of the energy must appear as turbulent kinetic energy and eventually be dissipated, but these processes are not investigated in detail. The results are shown to have some relevance to the problem of convectively driven mixing across a density interface, where the largest scales of motion are dominant, and to the understanding of the transition zone between two self-preserving states of turbulent convection.


2009 ◽  
Vol 633 ◽  
pp. 191-231 ◽  
Author(s):  
MARCO SIMIANO ◽  
D. LAKEHAL ◽  
M. LANCE ◽  
G. YADIGAROGLU

The detailed investigation of an unstable meandering bubble plume created in a 2-m-diameter vessel with a water depth of 1.5 m is reported for void fractions up to 4% and bubble size of the order of 2.5 mm. Simultaneous particle image velocity (PIV) measurements of bubble and liquid velocities and video recordings of the projection of the plume on two vertical perpendicular planes were produced in order to characterize the state of the plume by the location of its centreline and its equivalent diameter. The data were conditionally ensemble averaged using only PIV sets corresponding to plume states in a range as narrow as possible, separating the small-scale fluctuations of the flow from the large-scale motions, namely plume meandering and instantaneous cross-sectional area fluctuations. Meandering produces an apparent spreading of the average plume velocity and void fraction profiles that were shown to remain self-similar in the instantaneous plume cross-section. Differences between the true local time-average relative velocities and the difference of the averaged phase velocities were measured; the complex variation of the relative velocity was explained by the effects of passing vortices and by the fact that the bubbles do not reach an equilibrium velocity as they migrate radially, producing momentum exchanges between high- and low-velocity regions. Local entrainment effects decrease with larger plume diameters, contradicting the classical dependence of entrainment on the time-averaged plume diameter. Small plume diameters tend to trigger ‘entrainment eddies’ that promote the inward-flow motion. The global turbulent kinetic energy was found to be dominated by the vertical stresses. Conditional averages according to the plume diameter showed that the large-scale motions did not affect the instantaneous turbulent kinetic energy distribution in the plume, suggesting that large scales and small scales are not correlated. With conditional averaging, meandering was a minor effect on the global kinetic energy and the Reynolds stresses. In contrast, plume diameter fluctuations produce a substantial effect on these quantities.


One of the positive results for enhancing turbulence is to improve swirl, which is an important factor of air motion in a diesel engine. Other than enhancing mixing and improvement in combustion processes it also influences heat transfer, combustion quality, and engine raw emissions. To improve swirl intensities in-cylinder parameters like velocity, pressure, temperature and turbulence intensity are to be considered. There are two ways to create a swirl, modification in the intake system and valve design. So this work done contains modifications in the design of manifold to enhance turbulence during the intake stroke. Designs of manifold having different bend angle of 15o , 30o , 45o , 60o and 75o were used, all parts of numerical analysis were carried out on Ansys Fluent. The 200mm long intake model having a 20 mm diameter, with a bend on 160mm along length was used to find out the best bend angle configuration from the above orientations. K-epsilon model was used to simulate flow dynamics; variations turbulent kinetic energy was studied. After analyzing these results it was concluded that best-optimized design (in terms of turbulent kinetic energy) to get better swirl was for 75o . This work gives the understanding to find new techniques for further improvement in mixing by increasing turbulent kinetic energy. This work emphasizes on the techniques to enhance turbulent kinetic energy of any flow, and can also be applied to different fields related to mixing of fluids other than diesel engine


Author(s):  
Dinesh V. Kalaga ◽  
Vishal Bhusare ◽  
H.J. Pant ◽  
Jyeshtharaj B. Joshi ◽  
Shantanu Roy

Abstract Industrial gas-liquid processes such as oxidation, hydrogenation, Fischer-Trospch synthesis, liquid-phase methanol synthesis, and nuclear fission are exothermic in nature; the reactor of choice for such processes is, therefore, a bubble column equipped with heat exchanging internals. In addition to maintaining the desired process temperature, the heat exchanging vertical tube internals are used to control flow structures and liquid back mixing. The present work reports the experimentally measured gas hold-up, mean liquid velocity and liquid phase turbulent kinetic energy, using the Radioactive Particle Tracking (RPT) technique, in a 120 mm diameter bubble column equipped with dense vertical tube internals covering 23 % of the total cross-sectional area of the column. The effect of superficial gas velocity (44–265 mm/s) on gas hold-up, mean liquid velocity and turbulent kinetic energy is presented and discussed. It has been inferred from the experimental results that the vertical tube internal located at the center of the column plays a vital role in affecting the hydrodynamics when compared to the conventional internal configurations reported in the literature. For the chosen dense internal configuration, the cross-sectional distribution of the gas holdup, mean liquid velocity and turbulent kinetic energy show asymmetry for all the superficial gas velocities investigated. The overall gas holdup and the liquid turbulence increases with an increase in the superficial gas velocity. The strong liquid circulation velocities have been seen upon the insertion of the dense internals.


Sign in / Sign up

Export Citation Format

Share Document