Land Use Adaption to Climate Change in the Vu Gia–Thu Bon Lowlands: Dry Season and Rainy Season

Author(s):  
Harro Stolpe ◽  
Nils Führer ◽  
Viet Quoc Trinh
2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Sardjito Eko Windarso dkk

The increasing of malaria cases in recent years at Kecamatan Kalibawang has been suspected correspond with the conversion of farming land-use which initiated in 1993. Four years after the natural vegetation in this area were changed become cocoa and coffee commercial farming estates, the number of malaria cases in 1997 rose more than six times, and in 2000 it reached 6085. This study were aimed to observe whether there were any differences in density and diversity of Anopheles as malaria vector between the cocoa and mix farming during dry and rainy seasons. The results of the study are useful for considering the appropriate methods, times and places for mosquito vector controlling. The study activities comprised of collecting Anopheles as well as identifying the species to determine the density and diversity of the malaria vector. Both activities were held four weeks in dry season and four weeks in rainy season. The mea-surement of physical factors such as temperature, humidity and rainfall were also conducted to support the study results. Four dusuns which meet the criteria and had the highest malaria cases were selected as study location. Descriptively, the results shows that the number of collected Anopheles in cocoa farming were higher compared with those in mix horticultural farming; and the number of Anopheles species identifi ed in cocoa farming were also more varied than those in the mix horticultural farming.Key words: bionomik vektor malaria, anopheles,


Climate ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 83
Author(s):  
Geofrey Gabiri ◽  
Bernd Diekkrüger ◽  
Kristian Näschen ◽  
Constanze Leemhuis ◽  
Roderick van der Linden ◽  
...  

The impact of climate and land use/land cover (LULC) change continues to threaten water resources availability for the agriculturally used inland valley wetlands and their catchments in East Africa. This study assessed climate and LULC change impacts on the hydrological processes of a tropical headwater inland valley catchment in Uganda. The hydrological model Soil and Water Assessment Tool (SWAT) was applied to analyze climate and LULC change impacts on the hydrological processes. An ensemble of six regional climate models (RCMs) from the Coordinated Regional Downscaling Experiment for two Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5, were used for climate change assessment for historical (1976–2005) and future climate (2021–2050). Four LULC scenarios defined as exploitation, total conservation, slope conservation, and protection of headwater catchment were considered. The results indicate an increase in precipitation by 7.4% and 21.8% of the annual averages in the future under RCP4.5 and RCP8.5, respectively. Future wet conditions are more pronounced in the short rainy season than in the long rainy season. Flooding intensity is likely to increase during the rainy season with low flows more pronounced in the dry season. Increases in future annual averages of water yield (29.0% and 42.7% under RCP4.5 and RCP8.5, respectively) and surface runoff (37.6% and 51.8% under RCP4.5 and RCP8.5, respectively) relative to the historical simulations are projected. LULC and climate change individually will cause changes in the inland valley hydrological processes, but more pronounced changes are expected if the drivers are combined, although LULC changes will have a dominant influence. Adoption of total conservation, slope conservation and protection of headwater catchment LULC scenarios will significantly reduce climate change impacts on water resources in the inland valley. Thus, if sustainable climate-smart management practices are adopted, the availability of water resources for human consumption and agricultural production will increase.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Richard Kobina Dadzie Ephraim ◽  
Christopher Amey Asamoah ◽  
Albert Abaka-Yawson ◽  
Precious Kwablah Kwadzokpui ◽  
Samuel Adusei

Abstract Background Climate change is a significant threat to the health of the Ghanaian people. Evidence abounds in Ghana that temperatures in all the ecological zones are rising, whereas rainfall levels have been generally reducing and patterns are increasingly becoming erratic. The study estimated the impact of climate variation between seasons on biochemical markers of kidney disease. Methods This study conveniently recruited 50 apparently healthy peasant farmers and hawkers at Wa in the Upper West Region of Ghana. A pre-study screening for hepatitis A and C, Diabetes mellitus, hypertension was done. Serum creatinine and urea levels were analyzed to rule out kidney preexisting kidney disease. Baseline data was collected by estimating urea, creatinine, sodium, potassium, eGFR (estimated glomerular filtration rate) as well as for hemoglobin (Hb) and hematocrit (Hct) concentrations. Anthropometric data such as height, weight and blood pressure were measured by trained personnel. The study participants were closely followed and alerted deep in the dry season for the second sampling (urea, creatinine, hemoglobin, hematocrit, blood pressure, anthropometry). Results This study recruited more males (58.82%) than females (41.15%), majority (52.92%) of which were aged 25–29 years with the youngest being 22 years and the eldest being 35 years. The study found body mass index (p < 0.001), systolic blood pressure (p = 0.019), creatinine (p < 0.001), urea (p = 0.013) and eGFR (p < 0.001) to be significantly influenced by climate change. Stage 1 hypertension was predominant among the study participants during the dry season, 8 (15.69%) than was observed during the rainy season, 4 (7.84%) nonetheless the number of participants with normal BMI rose from 49.02% in the rainy season to 62.75% during the dry reason. Additionally, the study observed that the impact of climate change on systolic blood pressure and urea varied based on age and sex. Conclusion This study revealed that climatic changes cause variations in various biochemical parameters used to assess kidney function. Public health education on climatic changes and its implication including precautionary measures should be done among inhabitants of Wa and its environs to reduce its effect. Additionally, appropriate dietary patterns should also be advised to avoid the development of non-communicable diseases such as hypertension and obesity that are known principal causes of Chronic Kidney Disease (CKD).


2021 ◽  
Vol 66 (3) ◽  
pp. 195-206
Author(s):  
Thuy Hoang Luu Thu ◽  
Mui Tran Thi ◽  
Vu Vuong Van ◽  
Ly Pham Thi ◽  
Cuc Pham Thi

Assessment of the degree of meteorological drought in Dak Lak province is carried out using the SPI index and the water balance index K in the period 1985 - 2019. The results show that: According to the SPI index, drought tends to occur more at the time of transition from the dry season to the rainy season, during the rainy season, and from the time of transition from the rainy season to the dry season. The K-index in the period 1985 - 2019 showed there was a dry period at the beginning of the year from January to April. The anomalous drought factor plays a very important role because its large influence can cause damages, and allows assessing the variability of rainfall and the impact of climate change on the region. The study and evaluation of meteorological drought have practical significance, supporting managers in making policies on water resource management, ensuring sustainable economic and social development in the context of global climate change.


2011 ◽  
Vol 15 (7) ◽  
pp. 2245-2258 ◽  
Author(s):  
L. M. Mango ◽  
A. M. Melesse ◽  
M. E. McClain ◽  
D. Gann ◽  
S. G. Setegn

Abstract. Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.


Agrologia ◽  
2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Zakarias Frans Mores Hukom

Efforts to increase the productivity and quality of tea shoots are strongly influenced by local climatic and weather conditions at each plantation location.  The existence of climate change globally causes climate change fluctuations and weather elements in almost all tea plantation locations in the world from year to year. Determination of the local climate at each tea plantation location is important in establishing a stable and sustainable production management program and the quality of tea shoots. The weather parameters used for the determination of the start of the local rainy season (AMH) and the start of the dry season (AMK) at the tea plantation location in Tritis hamlet are the amount of rainfall and basic rainy days determined by the Meteorology, Climatology and Geophysics Agency (BMKG).  Rainfall data and local dasarian days of rain for a period of one year were analyzed using subjective descriptive methods involving graphical analysis and spatial analysis. The results showed that the beginning of the rainy season (AMH) in Tritis tea plantation was included in scenario 4 where AMH occurred in October 3 with the amount of rainfall ˃ 50 mm and the number of rainy days ˃ 6 days while the beginning of the dry season occurred in May 2 with the amount of rainfall ˂ 50 mm and the number of rainy days ˂ 6 days.Key words:  AMH, AMK, Rainfall, Dasarian, Rainy Day, and Tea Plantation.


2020 ◽  
Author(s):  
Nicola Mathura ◽  
Kegan Farrick

&lt;p&gt;Climate change and unsustainable land use practices such as quarrying have the potential to negatively impact the hydrology and water resource availability in catchments. Throughout the Caribbean, hillside quarrying has become a common practice. While these activities remove large sections of the critical zone, very little work has been done on how hillside quarrying impacts storm response and catchment water storage. &amp;#160;The study is particularly important given the expected changes to rainfall patterns in the Caribbean under future climate change. We hypothesised that the removal of the critical zone during quarrying will increase the magnitude of streamflow response to storm events due to its close proximity to the river, while also reducing the overall storage of the watershed. This study utilized a hydrometric and geochemical approach with direct measurements of rainfall and streamflow, and bi-weekly water sample collections for geochemistry and &lt;sup&gt;18&lt;/sup&gt;O and &lt;sup&gt;2&lt;/sup&gt;H stable isotopes between the 3.6 km&lt;sup&gt;2&lt;/sup&gt; Acono (forested) and the adjacent 3.6 km&lt;sup&gt;2&lt;/sup&gt; Don Juan (quarried) watersheds, located in Trinidad and Tobago. A total of 1207 mm of rainfall occurred, with 87.3% falling from August to November (wet season) and 12.7% from December to March (dry season). The &amp;#948;&lt;sup&gt; 18&lt;/sup&gt;O in rainfall ranged from -7.7 to 0.3 &amp;#8240; across both seasons with an average &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O of -3.5&amp;#177;1.8&amp;#8240; during the wet season and 0.1&amp;#177;0.5&amp;#8240; in the dry season. During the dry season the mean &amp;#948;&lt;sup&gt; 18&lt;/sup&gt;O of stream water showed a difference between the forested (-2.8&amp;#177;0.3&amp;#8240;) and quarried (-3.1&amp;#177;0.3&amp;#8240;) catchments whereas there was little differences in &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O in the forested catchment (-3.3&amp;#177;0.3 &amp;#8240;) and quarried catchment&amp;#8211;(-3.2&amp;#177;0.27&amp;#8240;) in the wet season. Our stream &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O dry season results suggests that different sources of water or anthropogenic influences such as water from settling ponds in the quarry could have impacted the &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O of the quarried stream as we expected the forested catchment to be more stable. Sample collection at these sites is ongoing and additional parameters such as soil water isotopes and rainfall, soil and stream ion chemistry are expected to improve our understanding of the translation from rainfall to streamflow. This research will allow us to gain a better insight of the current hydrological processes within this catchment and aid in the long term adaptive planning for factors such as climate change and further land use change.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2001 ◽  
Vol 10 (2) ◽  
pp. 129 ◽  
Author(s):  
Thomas Theis Nielsen ◽  
Kjeld Rasmussen

Temporal and spatial patterns of active fires, detected using NOAA AVHRR LAC data, in Burkina Faso are identified and related to vegetation, tree cover and land use classes. Initially, fires are classified into early and late dry season fires (EDSF and LDSF). Early dry season fires are defined as fires occurring earlier than 45 days after the start of the dry season, marked by a levelling out in the post-rainy season temperature increase, determined on the basis of surface temperature data derived from NOAA AVHRR. The date of the start of the dry season, defined in this way, is shown to be a linear function of the latitude. The distribution of fire occurrence are shown to display distinctively different patterns. These distribution patterns are related to information on vegetation class, woody biomass and land use intensity as well as net primary productivity, estimated from NOAA AVHRR rainy season data. It is shown that overall fire frequency and the ratio of early to late dry season fire activity depend strongly on net primary productivity, land use intensity and vegetation class. Late fires tend to occur mainly in agricultural areas, whereas early fires are much more frequent in areas of low land use intensity in the wooded savannas of southern Burkina Faso.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1307 ◽  
Author(s):  
Venkataramana Sridhar ◽  
Hyunwoo Kang ◽  
Syed A. Ali

The Mekong River Basin (MRB) is one of the significant river basins in the world. For political and economic reasons, it has remained mostly in its natural condition. However, with population increases and rapid industrial growth in the Mekong region, the river has recently become a hotbed of hydropower development projects. This study evaluated these changing hydrological conditions, primarily driven by climate as well as land use and land cover change between 1992 and 2015 and into the future. A 3% increase in croplands and a 1–2% decrease in grasslands, shrublands, and forests was evident in the basin. Similarly, an increase in temperature of 1–6 °C and in precipitation of 15% was projected for 2015–2099. These natural and climate-induced changes were incorporated into two hydrological models to evaluate impacts on water budget components, particularly streamflow. Wet season flows increased by up to 10%; no significant change in dry season flows under natural conditions was evident. Anomaly in streamflows due to climate change was present in the Chiang Saen and Luang Prabang, and the remaining flow stations showed up to a 5% increase. A coefficient of variation <1 suggested no major difference in flows between the pre- and post-development of hydropower projects. The results suggested an increasing trend in streamflow without the effect of dams, while the inclusion of a few major dams resulted in decreased river streamflow of 6% to 15% possibly due to irrigation diversions and climate change. However, these estimates fall within the range of uncertainties in natural climate variability and hydrological parameter estimations. This study offers insights into the relationship between biophysical and anthropogenic factors and highlights that management of the Mekong River is critical to optimally manage increased wet season flows and decreased dry season flows and handle irrigation diversions to meet the demand for food and energy production.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Edovia Dufatanye Umwali ◽  
Alishir Kurban ◽  
Alain Isabwe ◽  
Richard Mind’je ◽  
Hossein Azadi ◽  
...  

AbstractUnderstanding the influence of land use/land cover (LULC) on water quality is pertinent to sustainable water management. This study aimed at assessing the spatio-seasonal variation of water quality in relation to land use types in Lake Muhazi, Rwanda. The National Sanitation Foundation Water Quality Index (NSF-WQI) was used to evaluate the anthropogenically-induced water quality changes. In addition to Principal Components Analysis (PCA), a Cluster Analysis (CA) was applied on 12-clustered sampling sites and the obtained NSF-WQI. Lastly, the Partial Least Squares Path Modelling (PLS-PM) was used to estimate the nexus between LULC, water quality parameters, and the obtained NSF-WQI. The results revealed a poor water quality status at the Mugorore and Butimba sites in the rainy season, then at Mugorore and Bwimiyange sites in the dry season. Furthermore, PCA displayed a sample dispersion based on seasonality while NSF-WQI’s CA hierarchy grouped the samples corresponding to LULC types. Finally, the PLS-PM returned a strong positive correlation (+ 0.831) between LULCs and water quality parameters in the rainy season but a negative correlation coefficient (− 0.542) in the dry season, with great influences of cropland on the water quality parameters. Overall, this study concludes that the lake is seasonally influenced by anthropogenic activities, suggesting sustainable land-use management decisions, such as the establishment and safeguarding protection belts in the lake vicinity.


Sign in / Sign up

Export Citation Format

Share Document