Analyzing Land Use Impacts on Streamflow Response in a Tropical Watershed: A Hydrometric and Geochemical Approach

Author(s):  
Nicola Mathura ◽  
Kegan Farrick

<p>Climate change and unsustainable land use practices such as quarrying have the potential to negatively impact the hydrology and water resource availability in catchments. Throughout the Caribbean, hillside quarrying has become a common practice. While these activities remove large sections of the critical zone, very little work has been done on how hillside quarrying impacts storm response and catchment water storage.  The study is particularly important given the expected changes to rainfall patterns in the Caribbean under future climate change. We hypothesised that the removal of the critical zone during quarrying will increase the magnitude of streamflow response to storm events due to its close proximity to the river, while also reducing the overall storage of the watershed. This study utilized a hydrometric and geochemical approach with direct measurements of rainfall and streamflow, and bi-weekly water sample collections for geochemistry and <sup>18</sup>O and <sup>2</sup>H stable isotopes between the 3.6 km<sup>2</sup> Acono (forested) and the adjacent 3.6 km<sup>2</sup> Don Juan (quarried) watersheds, located in Trinidad and Tobago. A total of 1207 mm of rainfall occurred, with 87.3% falling from August to November (wet season) and 12.7% from December to March (dry season). The δ<sup> 18</sup>O in rainfall ranged from -7.7 to 0.3 ‰ across both seasons with an average δ<sup>18</sup>O of -3.5±1.8‰ during the wet season and 0.1±0.5‰ in the dry season. During the dry season the mean δ<sup> 18</sup>O of stream water showed a difference between the forested (-2.8±0.3‰) and quarried (-3.1±0.3‰) catchments whereas there was little differences in δ<sup>18</sup>O in the forested catchment (-3.3±0.3 ‰) and quarried catchment–(-3.2±0.27‰) in the wet season. Our stream δ<sup>18</sup>O dry season results suggests that different sources of water or anthropogenic influences such as water from settling ponds in the quarry could have impacted the δ<sup>18</sup>O of the quarried stream as we expected the forested catchment to be more stable. Sample collection at these sites is ongoing and additional parameters such as soil water isotopes and rainfall, soil and stream ion chemistry are expected to improve our understanding of the translation from rainfall to streamflow. This research will allow us to gain a better insight of the current hydrological processes within this catchment and aid in the long term adaptive planning for factors such as climate change and further land use change.</p><p> </p>

2020 ◽  
Vol 12 (20) ◽  
pp. 8373
Author(s):  
Matilda Cresso ◽  
Nicola Clerici ◽  
Adriana Sanchez ◽  
Fernando Jaramillo

Paramo ecosystems are tropical alpine grasslands, located above 3000 m.a.s.l. in the Andean mountain range. Their unique vegetation and soil characteristics, in combination with low temperature and abundant precipitation, create the most advantageous conditions for regulating and storing surface and groundwater. However, increasing temperatures and changing patterns of precipitation due to greenhouse-gas-emission climate change are threatening these fragile environments. In this study, we used regional observations and downscaled data for precipitation and minimum and maximum temperature during the reference period 1960–1990 and simulations for the future period 2041–2060 to study the present and future extents of paramo ecosystems in the Chingaza National Park (CNP), nearby Colombia’s capital city, Bogotá. The historical data were used for establishing upper and lower precipitation and temperature boundaries to determine the locations where paramo ecosystems currently thrive. Our results found that increasing mean monthly temperatures and changing precipitation will render 39 to 52% of the current paramo extent in CNP unsuitable for these ecosystems during the dry season, and 13 to 34% during the wet season. The greatest loss of paramo area will occur during the dry season and for the representative concentration pathway (RCP) scenario 8.5, when both temperature and precipitation boundaries are more prone to be exceeded. Although our initial estimates show the future impact on paramos and the water security of Bogotá due to climate change, complex internal and external interactions in paramo ecosystems make it essential to study other influencing climatic parameters (e.g., soil, topography, wind, etc.) apart from temperature and precipitation.


2014 ◽  
Vol 9 (4) ◽  
pp. 422-431 ◽  
Author(s):  
Emmanuel Tachie-Obeng ◽  
◽  
Bruce Hewitson ◽  
Edwin Akonno Gyasi ◽  
Mark Kofi Abekoe ◽  
...  

The possibility of future climate change in Ghana has received much attention due to repeated droughts and floods over the last decades. The savanna zone which is described as the food basket of Ghana is highly susceptible to climate change impact. Scenarios from 20-year time slices of the near future – 2046-2065 – and the far future – 2081-2100 – climate change meant to help guide policy remain a challenge. Empirical downscaling performed at the local-scale of Wa District in the savanna zone of Ghana under the IPCC A2 SRES emissions scenario showed evidence of probable climate change with mean annual temperatures expected to increase over an estimated range of 1.5°C to 2.3°C in the near future, with number of cool nights becoming less frequent, especially during the Harmattan1 period. The dry season is expected to be warmer than the wet season, with high inter-annual variations projected in both maximum (Tmax) and minimum (Tmin) temperatures. Given an average of 1 day of Tmax > 40°C per month in the control period of 1961-2000, the number of hot days is expected to increase to 12 by 2046-2065. An increase in total rainfall is projected with possible shifts in distribution toward the end of the year, with a slight increase in rainfall during the dry season and an increase of rainfall at the onset and toward the end of the wet season. However, a decrease in June rainfall is projected in the wet season. The objective of this paper is to improve the understanding of future climate as a guide to local level medium-term development plans of effective adaptation options for Wa district in the savanna zone of Ghana.


2011 ◽  
Vol 15 (7) ◽  
pp. 2245-2258 ◽  
Author(s):  
L. M. Mango ◽  
A. M. Melesse ◽  
M. E. McClain ◽  
D. Gann ◽  
S. G. Setegn

Abstract. Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1307 ◽  
Author(s):  
Venkataramana Sridhar ◽  
Hyunwoo Kang ◽  
Syed A. Ali

The Mekong River Basin (MRB) is one of the significant river basins in the world. For political and economic reasons, it has remained mostly in its natural condition. However, with population increases and rapid industrial growth in the Mekong region, the river has recently become a hotbed of hydropower development projects. This study evaluated these changing hydrological conditions, primarily driven by climate as well as land use and land cover change between 1992 and 2015 and into the future. A 3% increase in croplands and a 1–2% decrease in grasslands, shrublands, and forests was evident in the basin. Similarly, an increase in temperature of 1–6 °C and in precipitation of 15% was projected for 2015–2099. These natural and climate-induced changes were incorporated into two hydrological models to evaluate impacts on water budget components, particularly streamflow. Wet season flows increased by up to 10%; no significant change in dry season flows under natural conditions was evident. Anomaly in streamflows due to climate change was present in the Chiang Saen and Luang Prabang, and the remaining flow stations showed up to a 5% increase. A coefficient of variation <1 suggested no major difference in flows between the pre- and post-development of hydropower projects. The results suggested an increasing trend in streamflow without the effect of dams, while the inclusion of a few major dams resulted in decreased river streamflow of 6% to 15% possibly due to irrigation diversions and climate change. However, these estimates fall within the range of uncertainties in natural climate variability and hydrological parameter estimations. This study offers insights into the relationship between biophysical and anthropogenic factors and highlights that management of the Mekong River is critical to optimally manage increased wet season flows and decreased dry season flows and handle irrigation diversions to meet the demand for food and energy production.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Melinda Boyers ◽  
Francesca Parrini ◽  
Norman Owen-Smith ◽  
Barend F. N. Erasmus ◽  
Robyn S. Hetem

AbstractSouthern Africa is expected to experience increased frequency and intensity of droughts through climate change, which will adversely affect mammalian herbivores. Using bio-loggers, we tested the expectation that wildebeest (Connochaetes taurinus), a grazer with high water-dependence, would be more sensitive to drought conditions than the arid-adapted gemsbok (Oryx gazella gazella). The study, conducted in the Kalahari, encompassed two hot-dry seasons with similar ambient temperatures but differing rainfall patterns during the preceding wet season. In the drier year both ungulates selected similar cooler microclimates, but wildebeest travelled larger distances than gemsbok, presumably in search of water. Body temperatures in both species reached lower daily minimums and higher daily maximums in the drier season but daily fluctuations were wider in wildebeest than in gemsbok. Lower daily minimum body temperatures displayed by wildebeest suggest that wildebeest were under greater nutritional stress than gemsbok. Moving large distances when water is scarce may have compromised the energy balance of the water dependent wildebeest, a trade-off likely to be exacerbated with future climate change.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


2021 ◽  
Vol 18 (18) ◽  
pp. 5053-5083
Author(s):  
Jessica L. McCarty ◽  
Juha Aalto ◽  
Ville-Veikko Paunu ◽  
Steve R. Arnold ◽  
Sabine Eckhardt ◽  
...  

Abstract. In recent years, the pan-Arctic region has experienced increasingly extreme fire seasons. Fires in the northern high latitudes are driven by current and future climate change, lightning, fuel conditions, and human activity. In this context, conceptualizing and parameterizing current and future Arctic fire regimes will be important for fire and land management as well as understanding current and predicting future fire emissions. The objectives of this review were driven by policy questions identified by the Arctic Monitoring and Assessment Programme (AMAP) Working Group and posed to its Expert Group on Short-Lived Climate Forcers. This review synthesizes current understanding of the changing Arctic and boreal fire regimes, particularly as fire activity and its response to future climate change in the pan-Arctic have consequences for Arctic Council states aiming to mitigate and adapt to climate change in the north. The conclusions from our synthesis are the following. (1) Current and future Arctic fires, and the adjacent boreal region, are driven by natural (i.e. lightning) and human-caused ignition sources, including fires caused by timber and energy extraction, prescribed burning for landscape management, and tourism activities. Little is published in the scientific literature about cultural burning by Indigenous populations across the pan-Arctic, and questions remain on the source of ignitions above 70∘ N in Arctic Russia. (2) Climate change is expected to make Arctic fires more likely by increasing the likelihood of extreme fire weather, increased lightning activity, and drier vegetative and ground fuel conditions. (3) To some extent, shifting agricultural land use and forest transitions from forest–steppe to steppe, tundra to taiga, and coniferous to deciduous in a warmer climate may increase and decrease open biomass burning, depending on land use in addition to climate-driven biome shifts. However, at the country and landscape scales, these relationships are not well established. (4) Current black carbon and PM2.5 emissions from wildfires above 50 and 65∘ N are larger than emissions from the anthropogenic sectors of residential combustion, transportation, and flaring. Wildfire emissions have increased from 2010 to 2020, particularly above 60∘ N, with 56 % of black carbon emissions above 65∘ N in 2020 attributed to open biomass burning – indicating how extreme the 2020 wildfire season was and how severe future Arctic wildfire seasons can potentially be. (5) What works in the boreal zones to prevent and fight wildfires may not work in the Arctic. Fire management will need to adapt to a changing climate, economic development, the Indigenous and local communities, and fragile northern ecosystems, including permafrost and peatlands. (6) Factors contributing to the uncertainty of predicting and quantifying future Arctic fire regimes include underestimation of Arctic fires by satellite systems, lack of agreement between Earth observations and official statistics, and still needed refinements of location, conditions, and previous fire return intervals on peat and permafrost landscapes. This review highlights that much research is needed in order to understand the local and regional impacts of the changing Arctic fire regime on emissions and the global climate, ecosystems, and pan-Arctic communities.


2021 ◽  
Author(s):  
Sneha Santy ◽  
Pradeep Mujumdar ◽  
Govindasamy Bala

&lt;p&gt;High industrial discharge, excessive agricultural activities, untreated sewage disposal make the Kanpur region one of the most contaminated stretches of the Ganga river. This study analyses water quality for the combined future climate change and land use land cover scenarios for mid-century for a 238km long Kanpur stretch of Ganga river. Climate change projections from 21 General Circulation Models for the scenarios of RCP 4.5 and RCP 8.5 are considered and Land use Land Cover (LULC) projections are made with QGIS software. Streamflow and water temperature are modelled using the HEC-HMS model and a Water-Air temperature regression model, respectively. Water quality analysis is simulated using the QUAL2K model in terms of nine water quality parameters, dissolved oxygen, biochemical oxygen demand (BOD), ammonia nitrogen, nitrate nitrogen, total nitrogen, organic phosphorus, inorganic phosphorus, total phosphorus and faecal coliform. Climate change impact alone is projected to result in degraded water quality in the future. Combined climate change and LULC change may further degrade water quality, especially at the study area's critical locations. Our study will provide guidance to policymakers to safeguard the Ganga river from further pollution.&lt;/p&gt;


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1790 ◽  
Author(s):  
Muhammad Afzal ◽  
Ragab Ragab

Although the climate change projections are produced by global models, studying the impact of climatic change on water resources is commonly investigated at catchment scale where the measurements are taken, and water management decisions are made. For this study, the Frome catchment in the UK was investigated as an example of midland England. The DiCaSM model was applied using the UKCP09 future climate change scenarios. The climate projections indicate that the greatest decrease in groundwater recharge and streamflow was projected under high emission scenarios in the 2080s. Under the medium and high emission scenarios, model results revealed that the frequency and severity of drought events would be the highest. The drought indices, the Reconnaissance Drought Index, RDI, Soil Moisture Deficit, SMD and Wetness Index, WI, predicted an increase in the severity of future drought events under the high emission scenarios. Increasing broadleaf forest area would decrease streamflow and groundwater recharge. Urban expansion could increase surface runoff. Decreasing winter barley and grass and increasing oil seed rape, would increase SMD and slightly decrease river flow. Findings of this study are helpful in the planning and management of the water resources considering the impact of climate and land use changes on variability in the availability of surface and groundwater resources.


Sign in / Sign up

Export Citation Format

Share Document