Effect of Isothermal Aging on Mechanical Properties of Sn-3.0Ag-0.5Cu Solder Alloy with Porous Cu Interlayer Addition

Author(s):  
N. H. Jamadon ◽  
N. D. Ahmad ◽  
F. Yusof ◽  
T. Ariga ◽  
Y. Miyashita ◽  
...  
2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Madhuri Chandrashekhar Deshpande ◽  
Rajesh Chaudhari ◽  
Ramesh Narayanan ◽  
Harishwar Kale

Purpose This study aims to develop indium-based solders for cryogenic applications. Design/methodology/approach This paper aims to investigate mechanical properties of indium-based solder formulations at room temperature (RT, 27 °C) as well as at cryogenic temperature (CT, −196 °C) and subsequently to find out their suitability for cryogenic applications. After developing these alloys, mechanical properties such as tensile and impact strength were measured as per American Society for Testing and Materials standards at RT and at CT. Charpy impact test results were used to find out ductile to brittle transition temperature (DBTT). These properties were also evaluated after thermal cycling (TC) to find out effect of thermal stress. Scanning electron microscope analysis was performed to understand fracture mechanism. Results indicate that amongst the solder alloys that have been studied in this work, In-34Bi solder alloy has the best all-round mechanical properties at RT, CT and after TC. Findings It can be concluded from the results of this work that In-34Bi solder alloy has best all-round mechanical properties at RT, CT and after TC and therefore is the most appropriate solder alloy amongst the alloys that have been studied in this work for cryogenic applications Originality/value DBTT of indium-based solder alloys has not been found out in the work done so far in this category. DBTT is necessary to decide safe working temperature range of the alloy. Also the effect of TC, which is one of the major reasons of failure, was not studied so far. These parameters are studied in this work.


2006 ◽  
Vol 324-325 ◽  
pp. 1253-1256
Author(s):  
C.S. Kim ◽  
J.H. Kang ◽  
Jai Won Byeon ◽  
S.I. Kwun

The magnetic coercivity of ferritic 12Cr steel was experimentally studied in order to characterize its microstructures and mechanical properties during isothermal aging. As the aging time increased, the M23C6 carbide coarsened and additional precipitation of Fe2W phase was induced. The width of martensite lath increased to about 0.4μm after 4000 hrs of aging. The coercivity decreased as the number of precipitate decreased and the width of martensite lath increased. The hardness was proportional to the magnetic coercivity. These empirical linear relations suggested that the change in the microstructures and strength of ferritic 12Cr steel during thermal aging could be evaluated by monitoring the magnetic coercivity.


2000 ◽  
Vol 122 (1) ◽  
pp. 74-74
Author(s):  
X. Q. Shi, ◽  
W. Zhou, ◽  
H. L. J. Pang, and ◽  
Z. P. Wang

[S1043-7398(00)01601-7]


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 152
Author(s):  
Peng Peng ◽  
Shaosong Jiang ◽  
Zhonghuan Qin ◽  
Zhen Lu

This work fabricated a double hollow structural component of Mg-8.3Gd-2.9Y-0.8Zn-0.2Zr alloy by superplastic forming (SPF) and reaction-diffusion bonding (RDB). The superplastic characteristic and mechanical properties of Mg-8.3Gd-2.9Y-0.8Zn-0.2Zr alloy sheets at 250–450 °C were studied. Tensile tests showed that the maximum elongation of tensile specimens was about 1276.3% at 400 °C under a strain rate of 1 × 10−3 s−1. Besides, the effect of bonding temperature and interface roughness on microstructure and mechanical properties of the reaction diffusion-bonded joints with a Cu interlayer was investigated. With the increase of temperature, the diffusion coefficient of Cu increases, and the diffusion transition region becomes wider, leading to tightening bonding of the joint. However, the bonding quality of the joint will deteriorate due to grain size growth at higher temperatures. Shear tests showed that the highest strength of the joints was 152 MPa (joint efficiency = 98.7%), which was performed at 460 °C.


Sign in / Sign up

Export Citation Format

Share Document