Focused Ion Beam Fabrication: Process Development and Optimization Strategy for Optical Applications

Author(s):  
Vivek Garg ◽  
Rakesh G. Mote ◽  
Jing Fu
2000 ◽  
Vol 612 ◽  
Author(s):  
Ennis T. Ogawa ◽  
Volker A. Blaschke ◽  
Alex Bierwag ◽  
Ki-Don Lee ◽  
Hideki Matsuhashi ◽  
...  

AbstractAn electromigration study has determined the lifetime characteristics and failure mode of dual-damascene Cu/oxide interconnects at temperatures ranging between 200 and 325 °C at a current density of 1.0 MA/cm2. A novel test structure design is used which incorporates a repeated chain of “Blech-type” line elements. The large interconnect ensemble permits a statistical approach to addressing interconnect reliability issues using typical failure analysis tools such as focused ion beam imaging. The larger sample size of the test structure thus enables efficient identification of “early failure” or extrinsic modes of interconnect failure associated with process development. The analysis so far indicates that two major damage modes are observable: (1) via-voiding and (2) voiding within the damascene trench.


1999 ◽  
Vol 38 (Part 1, No. 2A) ◽  
pp. 698-706 ◽  
Author(s):  
Shin'ichi Morohashi ◽  
Jianguo Wen ◽  
Youichi Enomoto ◽  
Naoki Koshizuka

2006 ◽  
Vol 960 ◽  
Author(s):  
Warren MoberlyChan

ABSTRACTIon beams have been used to modify surface topography, producing nanometer-scale modulations (and even subnanometer ripples in this work) that have potential uses ranging from designing self-assembly structures, to controlling stiction of micromachined surfaces, to providing imprint templates for patterned media. Modern computer-controlled Focused Ion Beam tools enable alternating submicron patterned zones of such ion-eroded surfaces, as well as dramatically increasing the rate of ion beam processing. The DualBeam FIB/SEM also expedites process development while minimizing the use of materials that may be precious (Diamond) and/or produce hazardous byproducts (Beryllium). A FIB engineer can prototype a 3-by-3-by-3 matrix of variables in tens of minutes and consume as little as zeptoliters of material; whereas traditional ion beam processing would require tens of days and tens of precious wafers. Saturation wavelengths have been reported for ripples on materials such as single crystal silicon or diamond (∼200nm); however this work achieves wavelengths >400nm on natural diamond. Conversely, Be can provide a stable and ordered 2-dimensional array of <40nm periodicity. Also ripples <0.4nm are fabricated on carbon-base surfaces, and these quantized picostructures are measured by HR-TEM and electron diffraction. Rippling is a function of material, ion beam, and angle; but is also controlled by chemical environment, redeposition, and aspect ratio. Ideally a material has a constant yield (atoms sputtered off per incident ion); however, pragmatic FIB processes, coupled with the direct metrological feedback in a DualBeam tool, reveal etch rates do not remain constant for nanometer-scale processing. Control of rippling requires controlled metrology, and robust software tools are developed to enhance metrology. In situ monitoring of the influence of aspect ratio and redeposition at the micron scale correlates to the rippling fundamentals that occur at the nanometer scale and are controlled by the boundary conditions of FIB processing.


Author(s):  
Yuanjing (Jane) Li ◽  
Steven Scott ◽  
Howard Lee Marks

Abstract This paper presents a backside chip-level physical analysis methodology using backside de-processing techniques in combination with optimized Scanning Electron Microscopic (SEM) imaging technique and Focused Ion Beam (FIB) cross sectioning to locate and analyze defects and faults in failing IC devices. The case studies illustrate the applications of the method for 28nm flip chip bulk Si CMOS devices and demonstrate how it is used in providing insight into the fab process and design for process and yield improvements. The methods are expected to play an even more important role during 20-nm process development and yield-ramping.


Author(s):  
Zhi-Peng Li ◽  
Jianxin Fang ◽  
Haifeng Wang

Abstract Technology evolution in the data storage industry is driven by the continuous scaling down of devices and by an increasing complexity of the critical elements in the devices. Focused ion beam - scanning electron microscope (SEM) tomography can enable characterization of a device over its entire volume, while maintaining the resolution of the SEM. This study introduces the quantitative 3D tomography technique developed in the data storage industry to specifically address the industrial process development needs. In the detail section, the methodology of 3D reconstruction is introduced, key parameters are reviewed, and the steps for a successful 3D tomographic reconstruction are described. The study presents typical applications of 3D analysis for device design and process development to illustrate the benefits and unique learning opportunities. By reconstructing all slice-view 2D images quantitatively, 3D device structures and related 3D metrology data can be obtained.


Author(s):  
Steve Wang ◽  
Frederick Duewer ◽  
Shashidar Kamath ◽  
Christopher Kelly ◽  
Alan Lyon ◽  
...  

Abstract Xradia has developed a laboratory table-top transmission x-ray microscope, TXM 54-80, that uses 5.4 keV x-ray radiation to nondestructively image buried submicron structures in integrated circuits with at better than 80 nm 2D resolution. With an integrated tomographic imaging system, a series of x-ray projections through a full IC stack, which may include tens of micrometers of silicon substrate and several layers of Cu interconnects, can be collected and reconstructed to produce a 3D image of the IC structure at 100 nm resolution, thereby allowing the user to detect, localize, and characterize buried defects without having to conduct layer by layer deprocessing and inspection that are typical of conventional destructive failure analysis. In addition to being a powerful tool for both failure analysis and IC process development, the TXM may also facilitate or supplant investigations using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and focused ion beam (FIB) tools, which generally require destructive sample preparation and a vacuum environment.


1998 ◽  
Vol 4 (S2) ◽  
pp. 656-657 ◽  
Author(s):  
David W. Susnitzky ◽  
Kevin D. Johnson

The ongoing reduction of scale of semiconductor device structures places increasing demands on the sample preparation methods used for transmission electron microscopy (TEM). Much of the semiconductor industry's failure analysis and new process development effort requires specific transistor, metal or dielectric structures to be analyzed using TEM techniques. Focused ion beam (FIB) milling has emerged as a valuable technique for site-specific TEM sample preparation. FIB milling, typically with 25-50kV Ga+ ions, enables thin TEM samples to be prepared with submicron precision. However, Ga+ ion milling significantly modifies the surfaces of TEM samples by implantation and amorphization. Previous work using 90° milling angles has shown that Ga+ ion milling of Si produces a surface damage layer that is 280Å thick. This damage is problematical since the current generation of semiconductor devices requires TEM samples in the 500-1000Å thickness range.


2021 ◽  
Author(s):  
Vikas Dixit ◽  
Bryan Gauntt ◽  
Taehun Lee

Abstract The automation of both, transmission electron microscopy (TEM) imaging and lamella preparation using focused ion beam (FIB) has gathered an enormous momentum in last few years, especially in the semiconductor industry. The process development of current and future microprocessors requires a precise control on the patterning of a multitude of ultrafine layers, several of which are in the order of nanometers. The statistical accuracy and reliability of TEM based metrology and failure analysis of such complex and refined structures across the wafer needs a large-scale sampling, which is feasible only with an automation. An inherent requirement of automating TEM sample preparation entails a need of a robust and repeatable methodology that provides both, a good thickness control and an accurate targeting, on the intended feature in the ultra-thin lamella. In this work, key factors that impact both these aspects of a TEM lamella preparation will be discussed. In addition, steps needed to ensure that FIB toolsets consistently and reliably produce high quality samples, will be highlighted.


Sign in / Sign up

Export Citation Format

Share Document