Influence of SPS Sintering Temperature on Properties of ZrB2–SiC–Cr3C2 Ceramic

2018 ◽  
pp. 533-540
Author(s):  
Qi Li ◽  
Fengwei Guo ◽  
Lamei Cao ◽  
Xiaosu Yi
2014 ◽  
Vol 1058 ◽  
pp. 196-199 ◽  
Author(s):  
Qi Zhong Li ◽  
Qi Chang Li

SnO2 ceramics were synthesized by SPS. Phase compositions and microstructures are examined by XRD, SEM and EDS, respectively. Sb2O3 used in our research were beneficial to lower the sintering temperature and promote the densification of SnO2 ceramics. The SEM results show a homogeneous microstructure is approached consistent with the density measurement at 850-1000 °C. The XRD show all antimony ions came into the lattice of SnO2 to substitute for tin ions when the content of Sb2O3 are 0.1-2.5 mol%. The grain boundary are no SnO and Sb2O3, only SnO2. The mechanism of SPS sintering process is the local high temperature to produce the abnormal growth of the grain, and evaporation-condensation; and solid solution of Sb3+ go into the SnO2 lattice produce oxygen vacancy to promote densification


2008 ◽  
Vol 604-605 ◽  
pp. 203-211 ◽  
Author(s):  
Marcello Cabibbo ◽  
Paolo Deodati ◽  
S. Libardi ◽  
Alberto Molinari ◽  
Roberto Montanari ◽  
...  

Spark Plasma Sintering (SPS) of nanostructured FeMo powder produces samples with satisfactory density, however the final grain size critically depends on the sintering temperature. Two groups (sets A and B) of samples have been examined by means of internal friction (IF) and dynamic modulus measurements carried out in successive test runs on the same samples to assess their structural stability. Set A and B had been sintered at 1113 and 1128 K and had an average grain size of 100 nm and 1 µm, respectively. TEM and XRD have been performed on the samples in as-prepared condition and after IF measurements cycles. The samples with smaller grains are more stable and substantially are not affected by grain coarsening which, on the contrary, occurs in those with grains of larger size. The heating up to 923 K during the tests diminishes dislocation density in both the groups. An anomalous trend of resonance frequency during the first test run in samples of set A has been ascribed to the formation of small cracks relaxing internal stresses.


Author(s):  
Gareth Thomas

Silicon nitride and silicon nitride based-ceramics are now well known for their potential as hightemperature structural materials, e.g. in engines. However, as is the case for many ceramics, in order to produce a dense product, sintering additives are utilized which allow liquid-phase sintering to occur; but upon cooling from the sintering temperature residual intergranular phases are formed which can be deleterious to high-temperature strength and oxidation resistance, especially if these phases are nonviscous glasses. Many oxide sintering additives have been utilized in processing attempts world-wide to produce dense creep resistant components using Si3N4 but the problem of controlling intergranular phases requires an understanding of the glass forming and subsequent glass-crystalline transformations that can occur at the grain boundaries.


2018 ◽  
Vol 31 (3) ◽  
pp. 26 ◽  
Author(s):  
Laheeb. A. Mohammed ◽  
Kareem. A. Jasim

   on this research is to study the effect of nickel oxide substitution on the pure phases superconductor Tl0.5Pb0.5Ba2Can-1Cun-xNixO2n+3-δ (n=3) where x=(0,0.2,0.4,0.6,0.8.and 1.0). The specimens in this work were prepared with used  procedure of solid state reaction with sintering temperature 8500C for 24 h .we used technical (4-prob)to calculated and the critical temperature Tc . The results of the XRD diffraction analysis showed that the structure for pure and doped phases was tetragonal with phases high-Tc phase (1223),(1212) and low-Tc phase (1202)  and add to the presence of some impure phase. It was noted the value a=b,c  the parameter of  the lattice increment  with the increment of Ni content. The increment of (NiO) concentration effects electrical resistivity, dielectric constant and the hardness.


2017 ◽  
Vol 59 (11-12) ◽  
pp. 1033-1036 ◽  
Author(s):  
Sherzod Kurbanbekov ◽  
Mazhyn Skakov ◽  
Viktor Baklanov ◽  
Batyrzhan Karakozov

2021 ◽  
Vol 13 (12) ◽  
pp. 6739
Author(s):  
Darko Landek ◽  
Lidija Ćurković ◽  
Ivana Gabelica ◽  
Mihone Kerolli Mustafa ◽  
Irena Žmak

In this work, alumina (Al2O3) ceramics were prepared using an environmentally friendly slip casting method. To this end, highly concentrated (70 wt.%) aqueous suspensions of alumina (Al2O3) were prepared with different amounts of the ammonium salt of a polycarboxylic acid, Dolapix CE 64, as an electrosteric dispersant. The stability of highly concentrated Al2O3 aqueous suspensions was monitored by viscosity measurements. Green bodies (ceramics before sintering) were obtained by pouring the stable Al2O3 aqueous suspensions into dry porous plaster molds. The obtained Al2O3 ceramic green bodies were sintered in the electric furnace. Analysis of the effect of three sintering parameters (sintering temperature, heating rate and holding time) on the density of alumina ceramics was performed using the response surface methodology (RSM), based on experimental data obtained according to Box–Behnken experimental design, using the software Design-Expert. From the statistical analysis, linear and nonlinear models with added first-order interaction were developed for prediction and optimization of density-dependent variables: sintering temperature, heating rate and holding time.


Sign in / Sign up

Export Citation Format

Share Document