Analysis of Pore Characteristics of Reservoir Rock Based on CT Scanning—Taking the Tazhong Block of Tarim Basin as an Example

Author(s):  
Ying Guo ◽  
Yong Yang ◽  
Guangying Ren ◽  
Jinlong Ni ◽  
Hanlie Cheng
2012 ◽  
Vol 524-527 ◽  
pp. 89-95 ◽  
Author(s):  
Yu Zhao Hu ◽  
Pei Rong Zhao ◽  
Yu Hui Lv

Northern Kashi Sag is located on the northwestern periphery of Tarim Basin, China. This block has been explored for a half century, and Akmomu gas reservoir was discovered in 2001. In Northern Kashi Sag, organic-rich intervals mainly occur in Carboniferous, Lower Permian and Jurassic. Lower Cretaceous Kezilesu Formation(K1kz) is dominated by braid river succession and is best in big thickness of 385-862m,high porosity of 14.90% and high permeability of 207.00 ×10-3μm2. The first grade cap rocks are gypsolyte and mud-gypsolyte in upper Cretaceous and Paleogene with thickness of 100-200m. Two Petroleum Systems are identified, and one is J2y-N1p, Yangye Formation (J2y) serves as source rock, and Neogene Pakabulake(N1p) as reservoir rock. Another is C1+P1by-K1kz petroleum system, Lower Carboniferous and Lower Permian Biyoulieti Formation( P1by) serve as source rock, and Kezilesu Formation (K1kz) as reservoir rock. J2y-N1p petroleum system contains abundant oil sand resource. In 2001,Akmomu gas reservoir was discovered by AK#1 in C1+P1by-K1kz petroleum system.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4332
Author(s):  
Cees J. L. Willems ◽  
Chaojie Cheng ◽  
Sean M. Watson ◽  
James Minto ◽  
Aislinn Williams ◽  
...  

Hundreds of geothermal wells have been drilled in Hungary to exploit Pannonian Basin sandstones for district heating, agriculture, and industrial heating projects. Most of these sites suffer from reinjection issues, limiting efficient use of this vast geothermal resource and imposing significant extra costs for the required frequent workovers and maintenance. To better understand the cause of this issue requires details of reservoir rock porosity, permeability, and mineralogy. However, publicly available data for the properties of reservoir rocks at geothermal project sites in Hungary is typically very limited, because these projects often omit or limit data acquisition. Many hydrocarbon wells in the same rocks are more extensively documented, but their core, log, or production data are typically decades old and unavailable in the public domain. Furthermore, because many Pannonian sandstone formations are poorly consolidated, coring was always limited and the collected core often unsuitable for conventional analysis, only small remnant fragments typically being available from legacy hydrocarbon wells. This study aims to reduce this data gap and to showcase methods to derive reservoir properties without using core for flow experiments. The methods are thin-section analysis, XRD analysis and mercury intrusion porosimetry, and X-CT scanning followed by numerical flow simulation. We validate our results using permeability data from conventional production testing, demonstrating the effectiveness of our method for detailed reservoir characterization and to better constrain the lateral variation in reservoir properties across the Pannonian Basin. By eliminating the need for expensive bespoke coring to obtain reservoir properties, such analysis will contribute to reducing the capital cost of developing geothermal energy projects, thus facilitating decarbonization of global energy supply.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5449
Author(s):  
Jiannan Sun ◽  
Ke Yan ◽  
Yongsheng Zhu ◽  
Jun Hong

The porous oil-containing cage achieves the storage, spillage, and suction of lubricating oil by its micro-pore structure, thus ensuring the self-lubricating performance of the bearing. Carrying out fast and accurate modeling of the cage microscopic pore structure is the key to the analysis of the self-lubricating mechanism of bearings. In response to the issues where current modeling methods of porous materials have a low similarity of pore distribution, morphology, structure, and size characteristics, and the transition of pore surfaces is sharp, this paper proposed a modeling method of a highly similar micro-pore structure based on the idea of median filtering, the quartet structure generation set (QSGS), and the slice method. By extracting and analyzing the pore characteristics of the porous model and comparing them with the experimental results of CT scanning, the advantages of the modeling method in terms of morphology and pore connectivity were verified. Finally, by carrying out simulation analysis of the centrifugal force of oil splashing and capillary oil absorption on the constructed model by combining the parameters of porous structures such as porosity and tortuosity, the advantages of the modeling method in the construction of the porous model and multi-physical field analysis were further verified.


2017 ◽  
Vol 21 (suppl. 1) ◽  
pp. 285-292 ◽  
Author(s):  
Yang Ju ◽  
Yongming Yang ◽  
Xi Zhao ◽  
Feng Gao ◽  
Wei Song ◽  
...  

The porous structure of a reservoir rock greatly influences its evolutive deformation and fracture behavior during excavation of natural resources reservoirs. Most numerical models for porous structures have been used to predict the quasi-static mechanical properties, but few are available to accurately characterize the evolution process of the porous structure and its influence on the macroscopic properties of reservoir rocks. This study reports a novel method to characterize the porous structure of sandstone using its topological parameters and to determine the laws that govern the evolutive deformation and failure of the topological structure under various uniaxial compressive loads. A numerical model of the porous sandstone was established based on the pore characteristics that were acquired using computed tomography imaging techniques. The analytical method that integrates the grassfire algorithm and the maximum inscribed sphere algorithm was proposed to create the 3-D topological model of the deformed porous structure, through which the topological parameters of the structure were measured and identified. The evolution processes of the porous structure under various loads were characterized using its equivalent topological model and parameters. This study opens a new way to characterize the dynamic evolution of the pore structure of reservoir sandstone under excavation disturbance.


2019 ◽  
Vol 212 ◽  
pp. 130-139 ◽  
Author(s):  
Haonan Zhou ◽  
Hui Li ◽  
Ahmed Abdelhady ◽  
Xiao Liang ◽  
Hanbing Wang ◽  
...  

2018 ◽  
Vol 8 (11) ◽  
pp. 2191 ◽  
Author(s):  
Yafeng Gong ◽  
Haipeng Bi ◽  
Chunyu Liang ◽  
Shurong Wang

The modifiers NTC (nano-TiO2/CaCO3) and BF (basalt fiber) were adopted to modify a base matrix asphalt mixture. The base matrix asphalt mixture and three kinds of modified asphalt mixture under F–T (freeze–thaw) cycles were scanned by computed tomography. The air voids and morphological changes of asphalt mixture were summarized by image processing technology, and the development process of F–T damage to asphalt mixture was explained from a micro-view. The porosity of NTC-modified asphalt mixture changed little, and the void distribution between base matrix asphalt mixture and NTC-BF (nano-TiO2/CaCO3 and basalt fiber) composite modified asphalt mixture was more uniform. The macro-pores in the asphalt mixture under 15 F–T cycles began to connect gradually, and the pore characteristics also changed. The number and shape of the pores changed under 15 F–T cycles. According to the state characteristics, the change amplitude of the pore characteristics of matrix asphalt mixture and NTC-BF composite modified asphalt mixture were the most stable under F–T cycles.


2021 ◽  
Vol 21 (1) ◽  
pp. 262-273
Author(s):  
Jun Jin ◽  
Zhao Yang ◽  
Xuekun Chen ◽  
Lulu Li ◽  
Hongxia Yang ◽  
...  

This paper comprehensively studies the micro- and nanometer-scale pore characteristics and structure of the Lucaogou Formation shale oil reservoir in the Jimsar Sag using high-pressure mercury analysis, field emission scanning electron microscopy and nano-CT scanning technology. In addition, the occurrence states of crude oil in pores are analyzed combined with macro–micro characteristics. The results show that there are various reservoir types; the main reservoir pore structure is on the micron and nanometer levels, with other void spaces including intergranular pores, interparticle dissolution pores, intercrystalline pores and microfissures. Nanopores are generally oil-bearing and mostly in the adsorption state, which changes the traditional understanding that micron pores are the only microscopic pores in the reservoir and confirms that shale oil exists in ‘sweet spots’ and mud-shale sections of the Lucaogou Formation.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 906-915
Author(s):  
Min Li ◽  
Hemiao Yu ◽  
Hongpu Du

Abstract Moisture variation in porous media depends mainly on the pore characteristics. This article used the micro-computed tomography (micro-CT) (a non-destructive imaging technique to generate a three-dimensional virtual model) and the Brooks–Corey model to deduce the moisture migration in sand. Relationship between capillary rise height and time (h–t) was achieved by numerical simulation in the capillary suction process, where the parameters fractal dimension, porosity, and air–water interfacial area were obtained by the micro-CT scanning. Meanwhile, experiments of capillary rise in sand column were performed using four different sizes washed sand, and the capillary heights at different times were recorded. Results show that the capillary suction is decided by the aperture size and phase morphology simultaneously, and particle size has obvious effect on capillarity, and the wetting front lowers with the increase in grain size and the decrease in rising rate. Parameters air entry pressure and pore-size distribution index obtained by micro-CT scanning technology and empirical formula are accurate. Method of combing micro-CT images and Brooks–Corey model can predict well the capillary suction of porous media. It is also proved that the capillary suction is decided by the aperture size and phase morphology simultaneously.


Author(s):  
C.J. Stuart ◽  
B.E. Viani ◽  
J. Walker ◽  
T.H. Levesque

Many techniques of imaging used to characterize petroleum reservoir rocks are applied to dehydrated specimens. In order to directly study behavior of fines in reservoir rock at conditions similar to those found in-situ these materials need to be characterized in a fluid saturated state.Standard light microscopy can be used on wet specimens but depth of field and focus cannot be obtained; by using the Tandem Scanning Confocal Microscope (TSM) images can be produced from thin focused layers with high contrast and resolution. Optical sectioning and extended focus images are then produced with the microscope. The TSM uses reflected light, bulk specimens, and wet samples as opposed to thin section analysis used in standard light microscopy. The TSM also has additional advantages: the high scan speed, the ability to use a variety of light sources to produce real color images, and the simple, small size scanning system. The TSM has frame rates in excess of normal TV rates with many more lines of resolution. This is accomplished by incorporating a method of parallel image scanning and detection. The parallel scanning in the TSM is accomplished by means of multiple apertures in a disk which is positioned in the intermediate image plane of the objective lens. Thousands of apertures are distributed in an annulus, so that as the disk is spun, the specimen is illuminated simultaneously by a large number of scanning beams with uniform illumination. The high frame speeds greatly simplify the task of image recording since any of the normally used devices such as photographic cameras, normal or low light TV cameras, VCR or optical disks can be used without modification. Any frame store device compatible with a standard TV camera may be used to digitize TSM images.


Sign in / Sign up

Export Citation Format

Share Document