scholarly journals Microstructure Analysis of Modified Asphalt Mixtures under Freeze-Thaw Cycles Based on CT Scanning Technology

2018 ◽  
Vol 8 (11) ◽  
pp. 2191 ◽  
Author(s):  
Yafeng Gong ◽  
Haipeng Bi ◽  
Chunyu Liang ◽  
Shurong Wang

The modifiers NTC (nano-TiO2/CaCO3) and BF (basalt fiber) were adopted to modify a base matrix asphalt mixture. The base matrix asphalt mixture and three kinds of modified asphalt mixture under F–T (freeze–thaw) cycles were scanned by computed tomography. The air voids and morphological changes of asphalt mixture were summarized by image processing technology, and the development process of F–T damage to asphalt mixture was explained from a micro-view. The porosity of NTC-modified asphalt mixture changed little, and the void distribution between base matrix asphalt mixture and NTC-BF (nano-TiO2/CaCO3 and basalt fiber) composite modified asphalt mixture was more uniform. The macro-pores in the asphalt mixture under 15 F–T cycles began to connect gradually, and the pore characteristics also changed. The number and shape of the pores changed under 15 F–T cycles. According to the state characteristics, the change amplitude of the pore characteristics of matrix asphalt mixture and NTC-BF composite modified asphalt mixture were the most stable under F–T cycles.

2018 ◽  
Vol 8 (12) ◽  
pp. 2581 ◽  
Author(s):  
Yafeng Gong ◽  
Haipeng Bi ◽  
Zhenhong Tian ◽  
Guojin Tan

The objective of this research is to evaluate the pavement performance degradation of nano-TiO2/CaCO3 and basalt fiber composite modified asphalt mixtures under freeze‒thaw cycles. The freeze‒thaw resistance of composite modified asphalt mixture was studied by measuring the mesoscopic void volume, stability, indirect tensile stiffness modulus, splitting strength, uniaxial compression static, and dynamic creep rate. The equal-pitch gray prediction model GM (1, 3) was also established to predict the pavement performance of the asphalt mixture. It was concluded that the high- and low-temperature performance and water stability of nano-TiO2/CaCO3 and basalt fiber composite modified asphalt mixture were better than those of an ordinary asphalt mixture before and after freeze‒thaw cycles. The test results of uniaxial compressive static and dynamic creep after freeze‒thaw cycles showed that the high-temperature stability of the nano-TiO2/CaCO3 and basalt fiber composite modified asphalt mixture after freeze‒thaw was obviously improved compared with an ordinary asphalt mixture.


2020 ◽  
Vol 10 (13) ◽  
pp. 4596
Author(s):  
Yafeng Gong ◽  
Jiaxiang Song ◽  
Haipeng Bi ◽  
Zhenhong Tian

This research optimizes the mix ratio of nano-TiO2/CaCO3 (NTC)-basalt fiber (BF) composite modified asphalt mixture. Based on the Box–Behnken method and the response surface method, a three-factor and three-level test was designed. The input indicators were the asphalt–aggregate ratio, NTC content, and BF content. The output indicators were the density, air voids, Marshall stability, flow value, voids in mineral aggregate (VMA), and voids filled with asphalt (VFA) values of the asphalt mixture. The response surface model was established according to the test response index value. Then, the function was fitted through multiple regression equations and multivariate analysis of variance was performed. Finally, according to the specification requirements and engineering needs, the selected conditions of each response value were determined to optimize the asphalt–aggregate ratio and the contents of NTC and BF, and the predicted values were verified through the measured data. The test results show that the optimal contents of NTC and BF and the optimal asphalt–aggregate ratio were 5.1%, 3.9%, and 5.67%, respectively. By comparing the measured Marshall test index value with the predicted value, the minimum relative error was 0.096% and the maximum error was 6.960%. The results show that response surface methodology can be used to optimize the mix ratio of composite modified asphalt mixtures.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2400 ◽  
Author(s):  
Yongchun Cheng ◽  
Di Yu ◽  
Yafeng Gong ◽  
Chunfeng Zhu ◽  
Jinglin Tao ◽  
...  

This study proposed an asphalt mixture modified by basalt fiber and diatomite. Performance of diatomite modified asphalt mixture (DAM), basalt fiber modified asphalt mixture (BFAM), diatomite and basalt fiber compound modified asphalt mixture (DBFAM), and control asphalt mixture (AM) were investigated by experimental methods. The wheel tracking test, low-temperature indirect tensile test, moisture susceptibility test, fatigue test and freeze–thaw cycles test of four kinds of asphalt mixtures were carried out. The results show that the addition of basalt fiber and diatomite can improve the pavement performance. Diatomite has a significant effect on the high temperature stability, moisture susceptibility and resistance to moisture and frost damage under freeze–thaw cycles of asphalt mixture. Basalt fiber has a significant effect on low-temperature cracking resistance of asphalt mixture. Composed modified asphalt mixture has obvious advantages on performance compared to the control asphalt mixture. It will provide a reference for the design of asphalt mixture in seasonal frozen regions.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1092 ◽  
Author(s):  
Yongchun Cheng ◽  
He Li ◽  
Wensheng Wang ◽  
Liding Li ◽  
Haitao Wang

This paper aims at the freeze–thaw (F-T) cycles resistance of styrene-butadiene-styrene (SBS) modified asphalt mixture reinforced with basalt fiber in order to explore the performance evaluation and prediction of asphalt mixtures at seasonal frozen regions. Asphalt was firstly modified by the common SBS and then SBS-modified stone mastic asphalt (SMA) specimens with basalt fiber were prepared by using Superpave gyratory compaction (SGC) method. Next, asphalt mixture specimens processed by 0–21 F-T cycles were adopted for the high-temperature compression test, low-temperature splitting test and indirect tensile stiffness modulus test. Meanwhile, a three-dimensional model of F-T damage evolution of the mixtures was also established based on the reliability and damage theory. The test results showed that the loss rates of mechanical strength increased rapidly, and then gradually flattened; however, these indications changed significantly after 15–18 F-T cycles. In addition, the exponential function could reflect the variation trend of the mechanical performances with F-T cycles to a certain degree. The damage evolution and prediction model based on the reliability and damage theory can be established to analyze the internal degradation law better.


2011 ◽  
Vol 266 ◽  
pp. 175-179 ◽  
Author(s):  
Yuan Xun Zheng ◽  
Ying Chun Cai ◽  
Ya Min Zhang

In order to discuss the effect of the basalt fiber on reinforcing pavement performance of asphalt mixtures, the optimum dosage of asphalt and fibers were studied by the method of Marshall test and rut test firstly. Then pavement performances of basalt fiber-modified asphalt mixtures were investigated through tests of high temperature stability, water stability and low temperature crack resistance, and compared with that of polyester fiber, xylogen fiber and control mixture. The testing results showed that the pavement performance of fiber-modified asphalt mixture are improved and optimized comparing with control asphalt mixture, and the performance of basalt fiber-modified asphalt mixture with best composition were excelled than those of polyester fiber and xylogen fiber.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1804
Author(s):  
Wensheng Wang ◽  
Guojin Tan ◽  
Chunyu Liang ◽  
Yong Wang ◽  
Yongchun Cheng

This study aims to study the viscoelastic properties of asphalt mixtures incorporating styrene–butadiene–styrene (SBS) polymer and basalt fiber under freeze–thaw (F-T) cycles by using the static creep test. Asphalt mixture samples incorporating styrene–butadiene–styrene (SBS) polymer and basalt fiber were manufactured following the Superpave gyratory compaction (SGC) method and coring as well as sawing. After 0 to 21 F-T cycles processing, a uniaxial compression static creep test for the asphalt mixture specimens was performed to evaluate the influence of F-T cycles. The results indicated that the F-T cycles caused a larger creep deformation in the asphalt mixtures, which led to a decrease in the rut resistance of the asphalt mixtures incorporating SBS polymer and basalt fiber. Besides, the resistance to deformation decreased significantly in the early stage of F-T cycles. On the other hand, the viscoelastic parameters were analyzed to discuss the variation of viscoelastic characteristics. The relaxation time increased with F-T cycles, which will not be conducive to internal stress dissipation. Compared with lignin fiber, basalt fiber can improve the resistance to high-temperature deformation and the low-temperature crack resistance of asphalt mixtures under F-T cycles.


2014 ◽  
Vol 638-640 ◽  
pp. 1166-1170 ◽  
Author(s):  
Meng Hui Hao ◽  
Pei Wen Hao

Natural mineral fiber with good performances of mechanical properties and environmentally friendly, pollution-free especially have gradually aroused extensive concern. In order to improve the quality of asphalt pavement, explore the applicability of nature basalt fiber in enhanced asphalt mixture performance, this paper investigates two typical asphalt mixtures and contrastive studies pavement performance of asphalt mixture by high temperature stability, water stability, low temperature anti-cracking and fatigue performance between basalt fiber modified asphalt mixture and base asphalt mixture, and then study the basic principle of fiber reinforcing asphalt mixture. The research show that basalt fiber modified asphalt mixture has a better pavement performance than base asphalt mixture, its dynamic stability is 1.6 times than base asphalt mixture, low temperature anti-cracking performance increased by more 25% and fatigue life is more 2 times than base asphalt mixture. And the basalt fiber can be used in the road engineering as an additive material that enhances the comprehensive performance of asphalt pavement.


2011 ◽  
Vol 243-249 ◽  
pp. 710-716 ◽  
Author(s):  
Ying Chun Cai ◽  
Yuan Xun Zheng

To study the influence of fiber on the water stability of asphalt mixtures, the optimum dosage of asphalt and fibers are studied by the method of Marshall test and rut test. The results demonstrate that the optimum dosage of asphalt and fibers are 4.63% and 0.30%, respectively. Then the improved effects of basalt fiber on water stability of asphalt mixtures are evaluated through immersed Marshall test and freeze-thaw splitting test according to related specifications. The results show that the freeze-thaw splitting strength and splitting strength without freeze-thaw of fiber-reinforced asphalt mixture are improved to some extent compared with control mixture. Splitting strength without freeze-thaw of basalt, polyester and xylogen fiber-reinforced asphalt mixture is increased by 36.4%, 15.4% and 6.2%, and freeze-thaw splitting strength is increased by 55.2%, 28.7% and 14.5%. It can be concluded that fiber can remarkably improved the water stability of asphalt mixtures, besides; the improvement effects of basalt fiber are superior to polyester fiber and xylogen fiber.


2018 ◽  
Vol 9 (1) ◽  
pp. 60 ◽  
Author(s):  
Wensheng Wang ◽  
Yongchun Cheng ◽  
Guirong Ma ◽  
Guojin Tan ◽  
Xun Sun ◽  
...  

The main distresses of asphalt pavements in seasonally frozen regions are due to the effects of water action, freeze-thaw cycles, and so on. Basalt fiber, as an eco-friendly mineral fiber with high mechanical performance, has been adopted to reinforce asphalt mixture in order to improve its mechanical properties. This study investigated the freeze-thaw damage characteristics of asphalt mixtures reinforced with eco-friendly basalt fiber by volume and mechanical properties—air voids, splitting tensile strength, and indirect tensile stiffness modulus tests. Test results indicated that asphalt mixtures reinforced with eco-friendly basalt fiber had better mechanical properties (i.e., splitting tensile strength and indirect tensile stiffness modulus) before and after freeze-thaw cycles. Furthermore, this study developed logistic damage models of asphalt mixtures in terms of the damage characteristics, and found that adding basalt fiber could significantly reduce the damage degree by about 25%, and slow down the damage grow rate by about 45% compared with control group without basalt fiber. Moreover, multi-variable grey models (GM) (1,N) were established for modelling the damage characteristics of asphalt mixtures under the effect of freeze-thaw cycles. GM (1,3) was proven as an effective prediction model to perform better in prediction accuracy compared to GM (1,2).


2020 ◽  
Vol 10 (9) ◽  
pp. 3301 ◽  
Author(s):  
Chunyu Liang ◽  
Junchen Ma ◽  
Peilei Zhou ◽  
Guirong Ma ◽  
Xin Xu

This paper focuses on the fracture damage characteristics of styrene-butadiene-styrene (SBS)-modified SMA-13 specimens with basalt fiber under various freeze-thaw (F-T) cycles. SBS-modified stone mastic asphalt (SMA)-13 specimens with basalt fiber were prepared, first, using the superpave gyratory compaction method. Then, asphalt mixture specimens processed with 0–21 F-T cycles were adopted for the high-temperature compression and low-temperature splitting tests. Meanwhile, the acoustic emission (AE) test was conducted to evaluate the fracture characteristics of the asphalt mixture during loading. The results showed that the AE parameters could effectively reflect the damage fracture characteristics of the asphalt mixture specimen during the high-temperature compression and low-temperature splitting processes. The fracture damage of the asphalt mixture specimens during compression or splitting are classified into three stages based on the variation of the AE signals, i.e., when the load level is below 0.1~0.2 during the first stage and the load level is 0.1–0.9 or 0.2–0.8 during the second stage. The AE signal amplitude and count show clear correlations with the compression and splitting load levels. Meanwhile, the AE signal clarifies the formation, development, and failure of internal damage for the asphalt mixture specimens during the compression and splitting processes. The intensity (value and density) of the AE signal parameters of asphalt mixture decreases with increasing F-T cycles. It is evident that the F-T cycle has a significant adverse effect on the mechanical strength of asphalt mixture, which makes asphalt mixtures more likely to cause early failure.


Sign in / Sign up

Export Citation Format

Share Document