Fundamental Knowledge on Seismic Motion

Author(s):  
Hideo Takabatake ◽  
Yukihiko Kitada ◽  
Izuru Takewaki ◽  
Akiko Kishida
2018 ◽  
Vol 21 (13) ◽  
pp. 1307-1321
Author(s):  
Mahdia Yasmina Mehiaoui ◽  
M. Hadid ◽  
M. K. Berrah
Keyword(s):  

Author(s):  
Do Huy Thuong ◽  
Nguyen Thi Phuong Hong

This research analysizes the factors affecting the business expectations of human resources in entertainment and event management. The research results have showed that of the 5 factors affecting the human resource expectations of businesses in entertainment and event management, the factor “professional knowledge” has the biggest impact on the expectations of the businesses. Next to it are “attitude”, “skill” and “ability”. The factor “fundamental knowledge” has the least influence on the expectations of the businesses.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Erin M. Ostrem Loss ◽  
Mi-Kyung Lee ◽  
Ming-Yueh Wu ◽  
Julia Martien ◽  
Wanping Chen ◽  
...  

ABSTRACT Soil-dwelling fungal species possess the versatile metabolic capability to degrade complex organic compounds that are toxic to humans, yet the mechanisms they employ remain largely unknown. Benzo[a]pyrene (BaP) is a pervasive carcinogenic contaminant, posing a significant concern for human health. Here, we report that several Aspergillus species are capable of degrading BaP. Exposing Aspergillus nidulans cells to BaP results in transcriptomic and metabolic changes associated with cellular growth and energy generation, implying that the fungus utilizes BaP as a growth substrate. Importantly, we identify and characterize the conserved bapA gene encoding a cytochrome P450 monooxygenase that is necessary for the metabolic utilization of BaP in Aspergillus. We further demonstrate that the fungal NF-κB-type velvet regulators VeA and VelB are required for proper expression of bapA in response to nutrient limitation and BaP degradation in A. nidulans. Our study illuminates fundamental knowledge of fungal BaP metabolism and provides novel insights into enhancing bioremediation potential. IMPORTANCE We are increasingly exposed to environmental pollutants, including the carcinogen benzo[a]pyrene (BaP), which has prompted extensive research into human metabolism of toxicants. However, little is known about metabolic mechanisms employed by fungi that are able to use some toxic pollutants as the substrates for growth, leaving innocuous by-products. This study systemically demonstrates that a common soil-dwelling fungus is able to use benzo[a]pyrene as food, which results in expression and metabolic changes associated with growth and energy generation. Importantly, this study reveals key components of the metabolic utilization of BaP, notably a cytochrome P450 monooxygenase and the fungal NF-κB-type transcriptional regulators. Our study advances fundamental knowledge of fungal BaP metabolism and provides novel insight into designing and implementing enhanced bioremediation strategies.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Xiuyan Hu ◽  
Qingjun Chen ◽  
Dagen Weng ◽  
Ruifu Zhang ◽  
Xiaosong Ren

In the design of damped structures, the additional equivalent damping ratio (EDR) is an important factor in the evaluation of the energy dissipation effect. However, previous additional EDR estimation methods are complicated and not easy to be applied in practical engineering. Therefore, in this study, a method based on energy dissipation is developed to simplify the estimation of the additional EDR. First, an energy governing equation is established to calculate the structural energy dissipation. By means of dynamic analysis, the ratio of the energy consumed by dampers to that consumed by structural inherent damping is obtained under external excitation. Because the energy dissipation capacity of the installed dampers is reflected by the additional EDR, the abovementioned ratio can be used to estimate the additional EDR of the damped structure. Energy dissipation varies with time, which indicates that the ratio is related to the duration of ground motion. Hence, the energy dissipation during the most intensive period in the entire seismic motion duration is used to calculate the additional EDR. Accordingly, the procedure of the proposed method is presented. The feasibility of this method is verified by using a single-degree-of-freedom system. Then, a benchmark structure with dampers is adopted to illustrate the usefulness of this method in practical engineering applications. In conclusion, the proposed method is not only explicit in the theoretical concept and convenient in application but also reflects the time-varying characteristic of additional EDR, which possesses the value in practical engineering.


2018 ◽  
Vol 19 (3) ◽  
pp. 459-472 ◽  
Author(s):  
Kuok Ho Daniel Tang

Purpose The purpose of this study is to investigate the impacts of a sustainable development course on the beliefs, attitudes and intentions of a cohort of engineering students in a university in Miri, Malaysia, towards sustainability. Design/methodology/approach Questionnaire survey was conducted among the cohort of students encompassing the three facets mentioned. Findings The respondents expressed low to medium agreement towards all the survey items related to beliefs, attitudes and intentions. A sense of moral obligation towards sustainability is linked to higher sustainability awareness, willingness to safeguard sustainability and a sense of responsibility towards sustainable development. The respondents were generally perceived to have fundamental knowledge of sustainable development. Research limitations/implications This study shows that a sustainable development course called Engineering Sustainable Development offered in a university in Miri, produced positive impacts on the beliefs, attitudes and intentions of the engineering students towards sustainable development. Sustainable development courses are generally instrumental to impart the value and practices of sustainability among university students. Originality/value As limited correlational studies on whether sustainable development courses effectively shape the beliefs and attitudes of students have been previously conducted, this study provides insight into the effectiveness of one of such courses and how the course can be further improved to enhance its effectiveness.


2009 ◽  
Vol 1193 ◽  
Author(s):  
Taishi Oouchi ◽  
Hiroyuki Tsuchi ◽  
Tetsuya Ota ◽  
Koji Hane ◽  
Toru Sasaki

AbstractAccording to recent seismic observation records, there are some cases where unexpectedly large seismic motion was observed deep underground and that was larger than at the surface. The factors influencing such phenomena are assumed to be deep geological structures with topographic irregularity, velocity structure and non-linearity of subsurface layers. These factors should be taken into account in the earthquake-resistant design of a geological repository. The influence of a deep underground geological structure with topographic irregularity on ground motion has been studied and it has been confirmed that such a structure have a significant impact on ground motion and the constructive interference of waves may result in strong earthquake ground motion in the vicinity of a structural boundary deep underground.


2021 ◽  
Author(s):  
Dai Oyama ◽  
Takatoshi Kanno ◽  
Tsugiko Takase

Quinone derivatives and their metal complexes are well-known molecules that participate in electron-transfer reactions relevant to diverse fields. However, the fundamental knowledge on the unique reactivity of redox-active quinone complexes...


2002 ◽  
Vol 18 (1) ◽  
pp. 1-17 ◽  
Author(s):  
K. Anastassiadis ◽  
I. E. Avramidis ◽  
P. Panetsos

According to the model of Penzien and Watabe, the three translational ground motion components on a specific point of the ground are statistically noncorrelated along a well-defined orthogonal system of axes p, w, and v, whose orientation remains reasonably stable over time during the strong motion phase of an earthquake. This orthotropic ground motion is described by three generally independent response spectra Sa, Sb, and Sc, respectively. The paper presents an antiseismic design procedure for structures according to the above seismic motion model. This design includes a) determination of the critical orientation of the seismic input, i.e., the orientation that gives the largest response, b) calculation of the maximum and the minimum values of any response quantity, and c) application of either the Extreme Stress Method or the Extreme Force Method for determining the most unfavorable combinations of several stress resultants (or sectional forces) acting concurrently at a specified section of a structural member.


Sign in / Sign up

Export Citation Format

Share Document