Machine Learning and Deep Learning in Cyber Security for IoT

Author(s):  
S. Velliangiri ◽  
Kenanya Kumar Kasaraneni
Author(s):  
Thiyagarajan P.

Digitalization is the buzz word today by which every walk of our life has been computerized, and it has made our life more sophisticated. On one side, we are enjoying the privilege of digitalization. On the other side, security of our information in the internet is the most concerning element. A variety of security mechanisms, namely cryptography, algorithms which provide access to protected information, and authentication including biometric and steganography, provide security to our information in the Internet. In spite of the above mechanisms, recently artificial intelligence (AI) also contributes towards strengthening information security by providing machine learning and deep learning-based security mechanisms. The artificial intelligence (AI) contribution to cyber security is important as it serves as a provoked reaction and a response to hackers' malicious actions. The purpose of this chapter is to survey recent papers which are contributing to information security by using machine learning and deep learning techniques.


Author(s):  
Alan Fuad Jahwar ◽  
◽  
Siddeeq Y. Ameen ◽  

Machin learning (ML) and Deep Learning (DL) technique have been widely applied to areas like image processing and speech recognition so far. Likewise, ML and DL play a critical role in detecting and preventing in the field of cybersecurity. In this review, we focus on recent ML and DL algorithms that have been proposed in cybersecurity, network intrusion detection, malware detection. We also discuss key elements of cybersecurity, the main principle of information security, and the most common methods used to threaten cybersecurity. Finally, concluding remarks are discussed, including the possible research topics that can be taken into consideration to enhance various cyber security applications using DL and ML algorithms.


Author(s):  
Mohammed I. Alghamdi

<p class="0abstract">The research aimed to conduct an extensive study of machine learning and deep learning methods in cybersecurity. To accomplish the objectives, the research carried out a qualitative study based on secondary data collection to review the available studies and literature. The research has examined three machine learning methods and three deep learning methods to study the most popular techniques used in cybersecurity. During the research, the working mechanism of each method was studied along with their strengths and weaknesses. Also, a comparative discussion has been made to examine the most effective method for cybersecurity. Limitations in the current literature were also identified, and future direction is also given to target and develop the weak areas of machine learning and deep learning methods.<em> </em><strong></strong></p>


2021 ◽  
pp. 1-25
Author(s):  
Guangjun Li ◽  
Preetpal Sharma ◽  
Lei Pan ◽  
Sutharshan Rajasegarar ◽  
Chandan Karmakar ◽  
...  

With the development of information technology, thousands of devices are connected to the Internet, various types of data are accessed and transmitted through the network, which pose huge security threats while bringing convenience to people. In order to deal with security issues, many effective solutions have been given based on traditional machine learning. However, due to the characteristics of big data in cyber security, there exists a bottleneck for methods of traditional machine learning in improving security. Owning to the advantages of processing big data and high-dimensional data, new solutions for cyber security are provided based on deep learning. In this paper, the applications of deep learning are classified, analyzed and summarized in the field of cyber security, and the applications are compared between deep learning and traditional machine learning in the security field. The challenges and problems faced by deep learning in cyber security are analyzed and presented. The findings illustrate that deep learning has a better effect on some aspects of cyber security and should be considered as the first option.


2019 ◽  
Vol 9 (20) ◽  
pp. 4396 ◽  
Author(s):  
Hongyu Liu ◽  
Bo Lang

Networks play important roles in modern life, and cyber security has become a vital research area. An intrusion detection system (IDS) which is an important cyber security technique, monitors the state of software and hardware running in the network. Despite decades of development, existing IDSs still face challenges in improving the detection accuracy, reducing the false alarm rate and detecting unknown attacks. To solve the above problems, many researchers have focused on developing IDSs that capitalize on machine learning methods. Machine learning methods can automatically discover the essential differences between normal data and abnormal data with high accuracy. In addition, machine learning methods have strong generalizability, so they are also able to detect unknown attacks. Deep learning is a branch of machine learning, whose performance is remarkable and has become a research hotspot. This survey proposes a taxonomy of IDS that takes data objects as the main dimension to classify and summarize machine learning-based and deep learning-based IDS literature. We believe that this type of taxonomy framework is fit for cyber security researchers. The survey first clarifies the concept and taxonomy of IDSs. Then, the machine learning algorithms frequently used in IDSs, metrics, and benchmark datasets are introduced. Next, combined with the representative literature, we take the proposed taxonomic system as a baseline and explain how to solve key IDS issues with machine learning and deep learning techniques. Finally, challenges and future developments are discussed by reviewing recent representative studies.


Author(s):  
Sumit Kaur

Abstract- Deep learning is an emerging research area in machine learning and pattern recognition field which has been presented with the goal of drawing Machine Learning nearer to one of its unique objectives, Artificial Intelligence. It tries to mimic the human brain, which is capable of processing and learning from the complex input data and solving different kinds of complicated tasks well. Deep learning (DL) basically based on a set of supervised and unsupervised algorithms that attempt to model higher level abstractions in data and make it self-learning for hierarchical representation for classification. In the recent years, it has attracted much attention due to its state-of-the-art performance in diverse areas like object perception, speech recognition, computer vision, collaborative filtering and natural language processing. This paper will present a survey on different deep learning techniques for remote sensing image classification. 


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


2020 ◽  
Author(s):  
Pathikkumar Patel ◽  
Bhargav Lad ◽  
Jinan Fiaidhi

During the last few years, RNN models have been extensively used and they have proven to be better for sequence and text data. RNNs have achieved state-of-the-art performance levels in several applications such as text classification, sequence to sequence modelling and time series forecasting. In this article we will review different Machine Learning and Deep Learning based approaches for text data and look at the results obtained from these methods. This work also explores the use of transfer learning in NLP and how it affects the performance of models on a specific application of sentiment analysis.


Sign in / Sign up

Export Citation Format

Share Document