Application of 3D Bridge Information Modeling in the Life-cycle of Bridges

Author(s):  
Afshin Hatami ◽  
Alex Mabrich

<p>Building information modeling (BIM) is a new technology in the bridge construction industry. 3D models can provide perfect numerical expression of drawings from design results. 3D information models for bridge structures improve design quality in terms of accurate drawings, constructability, and collaboration. However, there are lots of challenges to apply these techniques to actual bridge projects. For instance, bridge engineers are facing the challenge of making the vast information generated by their structural model useful for professionals further down the line in the lifecycle of the bridge. Contractors and inspectors require a 3D model which is created after the design process to add extra information related to activities and store that information in the same model. In this paper, technologies available to generate, manage, and enrich the bridge 3D model with intelligent information from construction to design and inspection are proposed.</p>

Author(s):  
G. S. Floros ◽  
C. Ellul ◽  
E. Dimopoulou

<p><strong>Abstract.</strong> Applications of 3D City Models range from assessing the potential output of solar panels across a city to determining the best location for 5G mobile phone masts. While in the past these models were not readily available, the rapid increase of available data from sources such as Open Data (e.g. OpenStreetMap), National Mapping and Cadastral Agencies and increasingly Building Information Models facilitates the implementation of increasingly detailed 3D Models. However, these sources also generate integration challenges relating to heterogeneity, storage and efficient management and visualization. CityGML and IFC (Industry Foundation Classes) are two standards that serve different application domains (GIS and BIM) and are commonly used to store and share 3D information. The ability to convert data from IFC to CityGML in a consistent manner could generate 3D City Models able to represent an entire city, but that also include detailed geometric and semantic information regarding its elements. However, CityGML and IFC present major differences in their schemas, rendering interoperability a challenging task, particularly when details of a building’s internal structure are considered (Level of Detail 4 in CityGML). The aim of this paper is to investigate interoperability options between the aforementioned standards, by converting IFC models to CityGML LoD 4 Models. The CityGML Models are then semantically enriched and the proposed methodology is assessed in terms of model’s geometric validity and capability to preserve semantics.</p>


2020 ◽  
Vol 12 (17) ◽  
pp. 6713
Author(s):  
Youngsoo Byun ◽  
Bong-Soo Sohn

Building Information Modeling (BIM) refers to 3D-based digital modeling of buildings and infrastructure for efficient design, construction, and management. Governments have recognized and encouraged BIM as a primary method for enabling advanced construction technologies. However, BIM is not universally employed in industries, and most designers still use Computer-Aided Design (CAD) drawings, which have been used for several decades. This is because the initial costs for setting up a BIM work environment and the maintenance costs involved in using BIM software are substantially high. With this motivation, we propose a novel software system that automatically generates BIM models from two-dimensional (2D) CAD drawings. This is highly significant because only 2D CAD drawings are available for most of the existing buildings. Notably, such buildings can benefit from the BIM technology using our low-cost conversion system. One of the common problems in existing methods is possible loss of information that may occur during the process of conversion from CAD to BIM because they mainly focus on creating 3D geometric models for BIM by using only floor plans. The proposed method has an advantage of generating BIM that contains property information in addition to the 3D models by analyzing floor plans and other member lists in the input design drawings together. Experimental results show that our method can quickly and accurately generate BIM models from 2D CAD drawings.


Author(s):  
F. Capocchiano ◽  
R. Ravanelli ◽  
M. Crespi

Within the construction sector, Building Information Models (BIMs) are more and more used thanks to the several benefits that they offer in the design of new buildings and the management of the existing ones. Frequently, however, BIMs are not available for already built constructions, but, at the same time, the range camera technology provides nowadays a cheap, intuitive and effective tool for automatically collecting the 3D geometry of indoor environments. It is thus essential to find new strategies, able to perform the first step of the scan to BIM process, by extracting the geometrical information contained in the 3D models that are so easily collected through the range cameras.<br><br> In this work, a new algorithm to extract planimetries from the 3D models of rooms acquired by means of a range camera is therefore presented. The algorithm was tested on two rooms, characterized by different shapes and dimensions, whose 3D models were captured with the Occipital Structure Sensor<sup>TM</sup>. The preliminary results are promising: the developed algorithm is able to model effectively the 2D shape of the investigated rooms, with an accuracy level comprised in the range of 5 - 10 cm. It can be potentially used by non-expert users in the first step of the BIM generation, when the building geometry is reconstructed, for collecting crowdsourced indoor information in the frame of BIMs Volunteered Geographic Information (VGI) generation.


2015 ◽  
Vol 11 (5) ◽  
pp. 57
Author(s):  
Li Wang ◽  
Zhi-kai Zhao ◽  
Na Xu

3D models classification is a critical process of Building Information Modeling (BIM). A Deep Learning Approach is proposed to classify 3D models in BIM environment. The ray based feature extraction algorithm is used to extract features of 3D models and form features matrix. The Deep Belief Network constructed by Restricted Boltzmann Machines applies the features matrix and classifies the models adopting the effective training process. The process of training DBN is layer by layer. Experiments were taken on the public 3D model library of PSB model database. The results show that compared with several commonly used classification method, the proposed method of this paper has achieved good results in the 3D model classification for efficiently BIM.


Author(s):  
E. S. Soonwald ◽  
A. E. Wojnarowski ◽  
S. G. Tikhonov ◽  
O. V. Artemeva ◽  
S. V. Tyurin

<p><strong>Abstract.</strong> Development and implementation of information models of spatial objects affect broadest application areas currently. Building Information Models (BIMs) are now becoming extremely popular. These models are able to describe a great number characteristics of building or engineering construction, including physical and functional properties, economic parameters, visual parameters, etc. BIM use is introduced currently as the mandatory aspect of building life cycle management, from design and construction to demolition. However, implementation of the BIM concept into the reconstruction, restoration and conservation of historical and cultural heritage remains the least developed domain. Therefore, research and development activities concerned with HBIMs (Historical Building Information Models) are particularly relevant. Saint Petersburg being the second largest Russian city has a huge number of architectural monuments, while industrial architecture composes a special category of these monuments. We provided a number of research and development activities devoted to the 3D information modelling of industrial architectural monuments located in St. Petersburg. Context of these works was established by the reconstruction and adaptation of these monuments to modern needs. 3D models of buildings were produced basing on results of the laser scanning and photogrammetric survey. Basing on our work, we have formalized main approaches to design and implementation of Building Information Models of the industrial architectural monuments.</p>


Author(s):  
J. Suziedelyte Visockiene ◽  
E. Tumeliene

<p><strong>Abstract.</strong> The implementation of Building Information Modelling (BIM) in each project, which is planned, have a design and construction stages. In the construction stage the objects are modelled by architects, engineers, and surveyors. Modelling process allowed to construct a BIM, which replaces two-dimensional (2D) building information into a three-dimensional (3D). Noticed that 3D BIM created by surveyors is not the same as 3D BIM, which is created by architects. Therefore, the purpose of this study is to identify the differences of the created 2D draftings made by 3D models between surveyors and architect’s. The surveyors make their model by using Unnamed Aerial Vehicle (UAV) system: Airborne Drone Data and Data photogrammetric processing technology. The 3D models accuracy is assessed by UAV images processing. The 3D information should be used to calculate façade geometry, volume, distances, contours, which are in the shadowed side of the house, and create 2D façade draftings. Traditionally, architects used 2D building’s façade draftings for pre-design in Construction Projects (CP). 3D architectural model is created by using structural 2D draftings created with Autodesk software. The architectural 3D model is more convenient for the general design and the visual view, it is easily to evaluate the impact of the changes that will be made. The 3D architectural model helps to finish a project at a low cost and also to evaluate the effect of the changes made. The 3D model from surveys measurements shows real view of an object (with deformations), meanwhile the 3D model from architects is a corrected image. Discrepancies between surveyors and architect’s 2D models made by 3D virtual reality (VR) are analysed in this article.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Robbert Anton Kivits ◽  
Craig Furneaux

Building Information Modeling (BIM) is the use of virtual building information models to develop building design solutions and design documentation and to analyse construction processes. Recent advances in IT have enabled advanced knowledge management, which in turn facilitates sustainability and improves asset management in the civil construction industry. There are several important qualifiers and some disadvantages of the current suite of technologies. This paper outlines the benefits, enablers, and barriers associated with BIM and makes suggestions about how these issues may be addressed. The paper highlights the advantages of BIM, particularly the increased utility and speed, enhanced fault finding in all construction phases, and enhanced collaborations and visualisation of data. The paper additionally identifies a range of issues concerning the implementation of BIM as follows: IP, liability, risks, and contracts and the authenticity of users. Implementing BIM requires investment in new technology, skills training, and development of new ways of collaboration and Trade Practices concerns. However, when these challenges are overcome, BIM as a new information technology promises a new level of collaborative engineering knowledge management, designed to facilitate sustainability and asset management issues in design, construction, asset management practices, and eventually decommissioning for the civil engineering industry.


Author(s):  
Bonsang Koo ◽  
Raekyu Jung ◽  
Youngsu Yu ◽  
Inhan Kim

Abstract Data interoperability between domain-specific applications is a key prerequisite for building information modeling (BIM) to solidify its position as a central medium for collaboration and information sharing in the construction industry. The Industry Foundation Classes (IFC) provides an open and neutral data format to standardize data exchanges in BIM, but is often exposed to data loss and misclassifications. Concretely, errors in mappings between BIM elements and IFC entities may occur due to manual omissions or the lack of awareness of the IFC schema itself, which is broadly defined and highly complex. This study explored the use of geometric deep learning models to classify infrastructure BIM elements, with the ultimate goal of automating the prechecking of BIM-to-IFC mappings. Two models with proven classification performance, Multi-View Convolutional Neural Network (MVCNN) and PointNet, were trained and tested to classify 10 types of commonly used BIM elements in road infrastructure, using a dataset of 1496 3D models. Results revealed MVCNN as the superior model with ACC and F1 score values of 0.98 and 0.98, compared with PointNet's corresponding values of 0.83 and 0.87, respectively. MVCNN, which employs multiple images to learn the features of a 3D artifact, was able to discern subtle differences in their shapes and geometry. PointNet seems to lose the granularity of the shapes, as it uses points partially selected from point clouds.


Author(s):  
Thomas H. Kolbe ◽  
Andreas Donaubauer

AbstractSemantic 3D city modeling and building information modeling (BIM) are methods for modeling, creating, and analyzing three-dimensional representations of physical objects of the environment. Digital modeling of the built environment has been approached from at least four different domains: computer graphics and gaming, planning and construction, urban simulation, and geomatics. This chapter introduces the similarities and differences of 3D models from these disciplines with regard to aspects like scale, level of detail, representation of spatial and semantic characteristics, and appearance. Exemplified by the international standards CityGML and Industry Foundation Classes (IFC), information models from semantic 3D city modeling and BIM and their corresponding modeling approaches are explored, and the relationships between them are discussed. Based on use cases from infrastructure planning, approaches for integrating information from semantic 3D city modeling and BIM, such as semantic transformation between CityGML and IFC, are described. Furthermore, the role of semantic 3D city modeling and BIM for recent developments in urban informatics, such as smart cities and digital twins, is investigated and illustrated by real-world examples.


The variants of the division of the life cycle of a construction object at the stages adopted in the territory of the Russian Federation, as well as in other countries are considered. Particular attention is paid to the exemplary work plan – "RIBA plan of work", used in England. A feature of this document is its applicability in the information modeling of construction projects (Building information Modeling – BIM). The article presents a structural and logical scheme of the life cycle of a building object and a list of works that are performed using information modeling technology at various stages of the life cycle of the building. The place of information models in the process of determining the service life of the building is shown. On the basis of the considered sources of information, promising directions for the development of the life cycle management system of the construction object (Life Cycle Management) and the development of the regulatory framework in order to improve the use of information modeling in construction are given.


Sign in / Sign up

Export Citation Format

Share Document