Role of Functional Defence Signalling Molecules in Plant–Microbe Interactions

Author(s):  
Shiwani Kushwaha ◽  
Nitin Kumar ◽  
Bhawna Thakur ◽  
Nagendra Kumar Singh ◽  
Deepak Singh Bisht
Cephalalgia ◽  
2011 ◽  
Vol 31 (15) ◽  
pp. 1532-1541 ◽  
Author(s):  
Maria Antonova ◽  
Troels Wienecke ◽  
Jes Olesen ◽  
Messoud Ashina

Background: During two decades of migraine provocation studies with naturally occurring signalling molecules, vasodilators such as prostaglandin E2, prostaglandin I2 (prostacyclin) and prostaglandin D2 were shown to be able to induce headache in man. To elucidate the role of inflammation and vasodilatation in the generation of headache, we investigated whether the pro-inflammatory and vasoconstricting prostanoid prostaglandin F2α (PGF2α) would cause headache in a human model of headache. Methods: Twelve healthy volunteers were randomly allocated to receive 3.5 µg/kg/min PGF2α or placebo over 20 min in a two-way crossover study. We recorded headache intensity on a verbal rating scale, middle cerebral artery blood flow velocity (VMCA) and the diameters of the superficial temporal artery (STA) and radial artery (RA). Results: We found no difference in the area under the curve (AUC) for immediate headache (0–90 min) between PGF2α and placebo ( p = 0.144). The McNemar's test showed no difference in the incidence of immediate and delayed headache between verum and placebo ( p = 0.500 and p = 1.000, respectively). There was no difference in VMCA ( p = 0.776) and in the diameter of the STA ( p = 0.460) or RA ( p = 0.780) between PGF2α and placebo. Conclusion: The present study shows that PGF2α, unlike vasodilating prostaglandins, does not provoke headache. We suggest that the vasodilating abilities of prostaglandins are important for the induction of experimental headache in healthy volunteers.


2008 ◽  
Vol 411 (3) ◽  
pp. 657-666 ◽  
Author(s):  
Anna K. Larsen ◽  
René Lametsch ◽  
John S. Elce ◽  
Jørgen K. Larsen ◽  
Bo Thomsen ◽  
...  

Dynamic regulation of the actin cytoskeleton is important for cell motility, spreading and the formation of membrane surface extensions such as lamellipodia, ruffles and blebs. The ubiquitous calpains contribute to integrin-mediated cytoskeletal remodelling during cell migration and spreading, by cleavage of focal adhesion components and signalling molecules. In the present study, the live-cell morphology of calpain-knockout and wild-type cells was examined by time-lapse fluorescence microscopy, and a role of calpain in mediating the formation of sporadic membrane blebs was established. Membrane blebbing was significantly reduced in calpain-knockout cells, and genetic rescue fully restored the wild-type phenotype in knockout cells. Proteomic comparison of wild-type and knockout cells identified decreased levels of RhoGDI-1 (Rho GDP-dissociation inhibitor) and cofilin 1, and increased levels of tropomyosin in calpain-knockout cells, suggesting a role of calpain in regulating membrane extensions involving these proteins. RhoGDI, cofilin and tropomyosin are known regulators of actin filament dynamics and membrane extensions. The reduced levels of RhoGDI-1 in calpain-knockout cells observed by proteome analysis were confirmed by immunoblotting. Genetic rescue of the calpain-knockout cells enhanced RhoGDI-1-expression 2-fold above that normally present in wild-type cells. These results suggest a regulatory connection between calpain and RhoGDI-1 in promoting formation of membrane blebs.


Development ◽  
2000 ◽  
Vol 127 (2) ◽  
pp. 217-224 ◽  
Author(s):  
B.L. Thomas ◽  
J.K. Liu ◽  
J.L. Rubenstein ◽  
P.T. Sharpe

Dlx2, a member of the distal-less gene family, is expressed in the first branchial arch, prior to the initiation of tooth development, in distinct, non-overlapping domains in the mesenchyme and the epithelium. In the mesenchyme Dlx2 is expressed proximally, whereas in oral epithelium it is expressed distally. Dlx2 has been shown to be involved in the patterning of the murine dentition, since loss of function of Dlx1 and Dlx2 results in early failure of development of upper molar teeth. We have investigated the regulation of Dlx2 expression to determine how the early epithelial and mesenchymal expression boundaries are maintained, to help to understand the role of these distinct expression domains in patterning of the dentition. Transgenic mice produced with a lacZ reporter construct, containing 3.8 kb upstream sequence of Dlx2, led to the mapping of regulatory regions driving epithelial but not mesenchymal expression in the first branchial arch. We show that the epithelial expression of Dlx2 is regulated by planar signalling by BMP4, which is coexpressed in distal oral epithelium. Mesenchymal expression is regulated by a different mechanism involving FGF8, which is expressed in the overlying epithelium. FGF8 also inhibits expression of Dlx2 in the epithelium by a signalling pathway that requires the mesenchyme. Thus, the signalling molecules BMP4 and FGF8 provide the mechanism for maintaining the strict epithelial and mesenchymal expression domains of Dlx2 in the first arch.


Author(s):  
Joni Renee White ◽  
Priscila Dauros-Singorenko ◽  
Jiwon Hong ◽  
Frédérique Vanholsbeeck ◽  
Anthony Phillips ◽  
...  

Cells from all domains of life release extracellular vesicles (EVs), packages that carry a cargo of molecules that participate in communication, co-ordination of population behaviours, virulence and immune response mechanisms. Mammalian EVs play an increasingly recognised role to fight infection, yet may also be commandeered to disseminate pathogens and enhance infection. EVs released by bacterial pathogens may deliver toxins to host cells, signalling molecules and new DNA to other bacteria, and act as decoys, protecting infecting bacteria from immune killing. In this review, we explore the role of EVs in infection from the perspective of both the pathogen and host, and highlight their importance in the host/pathogen relationship. We highlight proposed strategies for EVs in therapeutics, and call attention to areas where existing knowledge and evidence is lacking.


10.2741/4559 ◽  
2017 ◽  
Vol 22 (9) ◽  
pp. 1581-1598
Author(s):  
Jochen Mattner

2021 ◽  
Vol 19 ◽  
Author(s):  
Abdul Jalil Shah ◽  
Reyaz Hassan Mir ◽  
Roohi Mohi-ud-din ◽  
Faheem Hyder Pottoo ◽  
Mubashir Hussain Masoodi ◽  
...  

: Depression, a well know mental disorder has global prevalence, nearly affecting 17% of population. Due to various limitations of the currently available drugs, people have been adopting traditional herbal medicines to alleviate the symptoms of depression. It is notable to mention that natural products, their derivatives, and their analogs are the main source for new drug candidates in depression. The mechanisms include interplay with γ-aminobutyric acid (GABA) receptors, serotonergic, dopaminergic noradrenergic systems, and elevation of BDNF levels. The focus of this review is to revisit the role of signalling molecules in depression and highlight the use of plant-derived natural compounds to counter depression in the CNS.


Author(s):  
Peter Albersheim ◽  
Alan G. Darvill ◽  
Janice K. Sharp ◽  
Keith R. Davis ◽  
Steven H. Doares

Development ◽  
2002 ◽  
Vol 129 (6) ◽  
pp. 1327-1338 ◽  
Author(s):  
Masanori Takahashi ◽  
Noriko Osumi

Recent studies have shown that generation of different kinds of neurones is controlled by combinatorial actions of homeodomain (HD) proteins expressed in the neuronal progenitors. Pax6 is a HD protein that has previously been shown to be involved in the differentiation of the hindbrain somatic (SM) motoneurones and V1 interneurones in the hindbrain and/or spinal cord. To investigate in greater depth the role of Pax6 in generation of the ventral neurones, we first examined the expression patterns of HD protein genes and subtype-specific neuronal markers in the hindbrain of the Pax6 homozygous mutant rat. We found that Islet2 (SM neurone marker) and En1 (V1 interneurone marker) were transiently expressed in a small number of cells, indicating that Pax6 is not directly required for specification of these neurones. We also observed that domains of all other HD protein genes (Nkx2.2, Nkx6.1, Irx3, Dbx2 and Dbx1) were shifted and their boundaries became blurred. Thus, Pax6 is required for establishment of the progenitor domains of the ventral neurones. Next, we performed Pax6 overexpression experiments by electroporating rat embryos in whole embryo culture. Pax6 overexpression in the wild type decreased expression of Nkx2.2, but ectopically increased expression of Irx3, Dbx1 and Dbx2. Moreover, electroporation of Pax6 into the Pax6 mutant hindbrain rescued the development of Islet2-positive and En1-positive neurones. To know reasons for perturbed progenitor domain formation in Pax6 mutant, we examined expression patterns of Shh signalling molecules and states of cell death and cell proliferation. Shh was similarly expressed in the floor plate of the mutant hindbrain, while the expressions of Ptc1, Gli1 and Gli2 were altered only in the progenitor domains for the motoneurones. The position and number of TUNEL-positive cells were unchanged in the Pax6 mutant. Although the proportion of cells that were BrdU-positive slightly increased in the mutant, there was no relationship with specific progenitor domains. Taken together, we conclude that Pax6 regulates specification of the ventral neurone subtypes by establishing the correct progenitor domains.


Sign in / Sign up

Export Citation Format

Share Document